Flaszki Kleista i butelki lejdejskie: elektryczny szok uczonej Europy (1745-1746)

Ważne odkrycia niemal zawsze są niespodziewane, bywają także niebezpieczne, gdyż odkrywcy zwykle są w roli ucznia czarnoksiężnika, rozpętując moce, nad którymi nie potrafią zapanować. Odkrycie butelki lejdejskiej stanowiło przełom w badaniach elektryczności. Do tej pory była ona jedynie źródłem interesujących i zabawnych pokazów. Elektron znaczy po grecku bursztyn, i to bursztyn był pierwszą substancją używaną do wywołania zjawisk przyciągania i odpychania lekkich drobnych przedmiotów w rodzaju skrawków papieru. Zauważono, że także inne materiały, jak siarka albo szkło, elektryzują się przez tarcie. Znane było doświadczenie Graya, pokazujące, że elektryczność może być przekazywana także przez ciało ludzkie.

0154.P.2.1612.1032

Stephen Gray, farbiarz, astronom i okazjonalnie demonstrator eksperymentów w Towarzystwie Królewskim, został pod koniec życia pensjonariuszem Charterhouse, czegoś w rodzaju szpitala z domem starców dla gentlemanów (pojęcie w Anglii bardzo rozciągliwe) połączonego z sierocińcem i szkołą. Do eksperymentów używał czterdziestosiedmiofuntowego chłopca zawieszonego na jedwabnych izolujących pasach. Na rysunku widzimy jeden z wariantów takiego doświadczenia. Osoba B obraca tu za pomocą przekładni szklaną kulę C, która jest pocierana ręką osoby D. Zawieszony w powietrzu chłopiec stopami dotyka kuli, podając rękę dziewczynce G (stojącej na izolacyjnej podkładce z żywicy albo smoły). Jej ręka przyciąga skrawki złotej folii leżące na gerydonie H. Na drugim rysunku mamy naelektryzowaną szklaną rurkę TT, która za pomocą brązowego drutu B połączona jest z dzwonkiem A. Młoteczek C zawieszony jest na jedwabnym sznurze i jest na przemian przyciągany oraz odpychany przez A, w rezultacie oscyluje między dzwonkami A i E, wywołując ich dzwonienie.

Georg Matthias Bose, profesor filozofii naturalnej z Wittenbergi i autor marnych francuskich wierszy, w swych eksperymentach przejawiał iście germańskie poczucie humoru. Jeden z nich, znany jako Venus electrificata, polegał na tym, by naelektryzować damę stojącą na izolowanej podkładce. Gdy następnie jakiś kawaler próbował ją pocałować, rażony był iskrą wybiegającą z warg wybranki. Innym jego popisowym doświadczeniem była „beatyfikacja”: delikwent wkładał na głowę specjalną koronę, która po naelektryzowaniu świeciła. Mimo tak bezceremonialnego podejścia do aureoli i świętości starał się Bose o uznanie wszędzie, nawet w Turcji i u Ojca Świętego Benedykta XIV. To ostatnie ściągnęło na niego represje na macierzystej uczelni, kolebce luteranizmu, spór musiał zażegnywać król Fryderyk.

bub_gb_FSJWAAAAcAAJ-xx

Jesienią 1745 roku eksperymentami elektrycznymi zajął się dziekan luterańskiej kapituły katedralnej w Kamieniu Pomorskim, Ewald Georg von Kleist. Dwadzieścia lat wcześniej studiował on w Lipsku i w Lejdzie i mógł się już wtedy zetknąć z elektrycznością, choć bezpośredniej inspiracji dostarczyły mu stosunkowo niedawne eksperymenty Bosego, m.in. uzyskiwanie iskry z wody oraz zapalanie spirytusu za pomocą elektryczności. Wyobrażano sobie wówczas elektryczność jako jakiś pewien rodzaj rodzaj subtelnej materii jakoś spowinowaconej z ogniem, mówiono nawet o ogniu elektrycznym. Eksperymenty z czerpaniem ognia z wody bądź zamianą iskry elektrycznej na rzeczywisty płomień zdawały się potwierdzać bliski związek obu tych tajemniczych substancji. Kleist pragnął naelektryzować wodę i udało mu się to w następujący sposób: butelkę napełniał częściowo wodą, rtęcią albo spirytusem, następnie zatykał korkiem, przez który przechodził drut albo gwóźdź. Jeśli trzymało się ten wynalazek w ręku, podczas gdy gwóźdź podłączony był do machiny elektrostatycznej, można było go bardzo mocno naelektryzować. Kolba średnicy czterech cali po naelektryzowaniu potrafiła powalić chłopca w wieku ośmiu bądź dziewięciu lat, jak starannie odnotował dobry dziekan (nie podając wszakże wagi chłopca). Po raz pierwszy wytworzona przez człowieka elektryczność przestała być niewinną salonową zabawą. Jak pisał Kleist, każdemu odechciałoby się całowania tak naelektryzowanej Wenus.

flasche-xx

Rysunek von Kleista z listu do Pawła Świetlickiego, diakona luterańskiego kościoła św. Jana w Gdańsku, przedstawiający jego urządzenie (z listu tego korzystał D. Gralath)

Odkrycie von Kleista było przypadkowe: nie rozumiał on, dlaczego musi trzymać swoje urządzenie w ręku, aby działało. Chcąc nagromadzić dużą ilość elektrycznego ognia, należałoby raczej izolować naczynie zamiast trzymać je w ręku i w ten sposób uziemiać. Dziś wiemy, że flaszka Kleista, jak nazywano ją czasem w Niemczech, była po prostu kondensatorem: ręka i woda z gwoździem stanowiły jego dwie okładki rozdzielone szkłem. Z punktu widzenia ówczesnej wiedzy działanie tego urządzenia było jednak niezrozumiałe. Spośród kilku uczonych, którzy otrzymali listowne doniesienia Kleista, eksperyment zdołał powtórzyć chyba tylko Daniel Gralath (a właściwie jego pomocnik Gottfried Reyger) w Gdańsku. Niedługo później, już w roku 1746, podobne doświadczenie przeprowadzono niezależnie w Lejdzie. Także i tu pierwszym odkrywcą był naukowy amator, Andreas Cunaeus, prawnik, zabawiający się eksperymentami w pracowni miejscowego profesora Pietera van Musshenbroeka. Przypadkowo zauważył on to samo co Kleist, jego eksperyment powtórzył później pomocnik profesora, Jean Nicolas Allamand, a na koniec i sam Musshenbroek, który był nim tak mocno wstrząśnięty, że, jak wyznał swemu paryskiemu koledze, nawet za całe królestwo Francji nie chciałby tego przeżyć po raz drugi.

leiden exp-x

Strach niebawem minął i elektrowstrząsy za pomocą butelek lejdejskich zaczęli wytwarzać wszyscy eksperymentatorzy, choć przez pewien czas do dobrego tonu należało informować o przypadkach konwulsji, paraliżu, zawrotów głowy itp. Żona profesora z Lipska, Johanna Heinricha Wincklera, po dwóch wyładowaniach poczuła się tak słabo, że ledwie mogła mówić. Tydzień później mąż zaaplikował jej jeszcze jedno wyładowanie, po którym krew się jej puściła z nosa. Profesor Winckler humanitarnie wstrzymał się jednak od przeprowadzania eksperymentów na ptakach, nie chcąc zadawać owym stworzeniom niepotrzebnych cierpień. Abbé Jean Antoine Nollet, mistrz pokazów fizycznych, utrzymujący się z produkcji naukowych urządzeń dla bogatych klientów, takich jak np. Voltaire i pani du Châtelet, zaprezentował w obecności króla Ludwika XV żywy łańcuch 180 grenadierów, poprzez który rozładowywała się butelka lejdejska. Wszyscy oni jednocześnie podskakiwali, co tak bardzo podobało się suwerenowi, że kazał sobie ten eksperyment powtarzać.

Henry Cavendish: serce jak lód, głowa i ręce wirtuoza (1797-1798)

Zdarzają się ludzie, którzy nie przepadają za bliskością innych. Nie wiadomo, co z takimi zrobić – nie dają się wciągnąć do rozrywek i zabaw ludzkiego stada, unikają nawet miłości, nie mówiąc już o różnych grach społecznych w rodzaju: „popatrz, ile posiadam”, „popatrz, jaki jestem ważny i zewsząd okazały” itd. Piękny obraz takiego człowieka dał Claude Sautet w filmie Serce jak lód. Być może wzorował się do jakiegoś stopnia na postaci Maurice’a Ravela, któremu różni „badacze owadzich nogów” do dziś nie potrafili przekonująco przypisać żadnego życia uczuciowego.

„Nasze praktyczne, realne życie jest, mianowicie, nudne i mdłe, o ile nie targają nim namiętności, jeśli zaś one wkraczają, staje się niebawem bolesne; szczęśliwi są zatem ci tylko, którym przypada w udziale jakaś nadwyżka intelektu ponad tę miarę, jakiej wymaga służenie woli. W ten sposób bowiem wiodą prócz życia realnego ponadto jeszcze życie intelektualne, które bez bólu daje im stale ciekawe zajęcie i rozrywkę”. To oczywiście Arthur Schopenhauer, wielki filozof i nie mniejszy mizantrop (Aforyzmy o mądrości życia, przeł. J. Garewicz).

Uczeni powinni służyć ludzkości, pomnażać wiedzę ku powszechnemu zadowoleniu oraz własnej sławie – w końcu na jaką inną nieśmiertelność może liczyć człowiek rozumny? Co jednak myśleć o kimś, kto wyrzeka się zwyczajnego życia, nie szuka bliskości, więzów uczuciowych, nie dąży nawet do sławy? Henry Cavendish, najstarszy syn lorda Charlesa Cavendisha, starał się w życiu nie zajmować niczym oprócz nauki eksperymentalnej. Zainteresowania naukowe, podobnie jak majątek i członkostwo w Towarzystwie Królewskim odziedziczył po ojcu. Charles był tylko pełnym zapału amatorem, Henry natomiast okazał się uczonym wyjątkowo utalentowanym i pomysłowym. Nieśmiałość, a może słabe rozeznanie w wartości własnych prac, sprawiły, że nie opublikował wszystkich swoich dokonań. W 1772 roku zmierzył siły oddziaływania między ładunkami. Kilkanaście lat później podobne doświadczenia przeprowadził Charles Augustin Coulomb. Ponieważ tylko Coulomb ogłosił swoje wyniki, ładunek mierzymy dziś w kulombach, a nie w kawendiszach.

Cavendish_Henry_signature

Matka odumarła go bardzo wcześnie, unikał potem kobiet, krępowała go nawet ich obecność. Większą część życia spędził przy ojcu, żyjąc dość skromnie jak na syna lorda. Gdy ojciec umarł, a Henry był już po pięćdziesiątce, nic się nie zmieniło, oprócz tego, że teraz to on musiał decydować o wszystkim. Ubierał się zawsze skromnie i wedle mody sprzed dwóch pokoleń. Rzadko przyjmował gości i podejmował ich zawsze tym samym: podawano udziec barani i nic ponadto. Sam bywał tylko na spotkaniach uczonych z Towarzystwa Królewskiego, a w poniedziałki przez piętnaście lat jadał kolację w innym, nieformalnym zgromadzeniu uczonych, zwanym Monday Club. Nie znaczy to, że rozmawiał tam z kolegami. Odzywał się rzadko i mało, choć zwykle z sensem i precyzyjnie. Wystąpienia takie sprawiały mu widoczną trudność: peszył się, mamrotał. Miał przy tym piskliwy głos, co jeszcze bardziej wzmagało jego nieśmiałość. Nie mógł znieść pochwał i uciekał, gdy ktoś próbował zawrzeć z nim znajomość, zaczynając od komplementów i pochlebstw.

Charakter Cavendisha sprawiał kłopot biografom. Nie miał poglądów politycznych. Wolny był od snobizmu rodowego, podpisywał się samym imieniem i nazwiskiem, choć obaj jego dziadkowie byli książętami, a ród należał do najstarszych w kraju. Nie wyznawał żadnej religii. Doświadczenia prowadził nawet w niedziele – dzień czczony w Anglii jako święty przez wszystkie bodaj konkurujące tam ze sobą wyznania chrześcijańskie. Gdy umierał, wolał być sam, odesłał nawet lokaja. Nie wezwał też żadnego duchownego. Za życia nie interesował się zbytnio swoim majątkiem, głównym problemem było raczej znalezienie uczciwego stewarda, który miał nim zarządzać. A było czym: zostawił po sobie 700 000 funtów (ówczesny funt to 100-10 000 dzisiejszych funtów, zależnie od sposobu liczenia). Słabo orientował się w wartości pieniądza. Gdy proszono go, aby jakoś pomógł człowiekowi w finansowych tarapatach, zapytał, co mógłby zrobić. Gdy zasugerowano jakieś niewielkie wsparcie finansowe, Cavendish spytał, czy może to być czek na 10 000 funtów. Chodziło o Niemca, Heidingera, który zaczął prowadzić bibliotekę Cavendisha (dostępną na równych prawach także innym uczonym, właściciel wypisywał skrupulatnie rewersy, gdy coś wypożyczał). Ogólnie biorąc, Cavendish nie budził wszakże sympatii, nawet gdy wspierał potrzebujących. Mówiono, że jest suchy, pedantyczny, niewrażliwy na piękno, patrzący na krajobraz okiem geodety. Nie było w nim nic sentymentalnego, romantycznego ani też rycerskiego, o ile nie liczyć epizodu, kiedy to na przechadzce przyszedł z pomocą jakiejś kobiecie zaatakowanej przez rozwścieczoną krowę.

Jego praca naukowa była bezsprzecznie najwyższej próby. Towarzystwo Królewskie było swoistą kuźnią demokracji: na równych prawach współpracowali tam arystokrata Cavendish, syn cieśli okrętowego James Watt i syn rzemieślnika zajmującego się wykańczaniem tkanin Joseph Priestley (może zresztą dlatego, że społeczeństwo angielskie najwcześniej zarzuciło feudalne myślenie, nie doszło tam do rewolucji w rodzaju francuskiej). Cavendish, Priestley i Watt prowadzili niemal równocześnie ważne doświadczenia na temat powstawania wody z wodoru i tlenu. Watt rozniecił nawet spór o pierwszeństwo odkrycia, jak się zdaje, Cavendish zbytnio się tą kwestią nie przejmował. Sytuację wyjaśnił zresztą Francuz, Antoine Lavosier, który dowiódł, że wodę można rozłożyć na składowe pierwiastki – nie jest więc ona substancją prostą i nieredukowalną (Cavendish traktował ten proces powstawania w ramach koncepcji flogistonu, skazanej już wtedy na naukową śmierć).

Cavendish stwierdził też, że gdy pięć części zdeflogisotonowanego powietrza (czyli tlenu) zmieszać z trzema częściami zwykłego powietrza i przymusić do reakcji za pomocą wyładowań elektrycznych, niemal całe powietrze znika (tworzy się kwas azotawy). Zostawała jednak część: „nie więcej niż 1/120”, która nie zamieniała się w kwas. Precyzja Cavendisha okazała się tu niezwykle ważna: pod koniec XIX wieku zainteresował się tymi wynikami William Ramsay, a także lord Rayleigh, o którym pisaliśmy – niereagująca część okazała się nowym, chemicznie obojętnym gazem, który nazwano argon.

Najważniejsze okazały się chyba doświadczenia Cavendisha, pozwalające wyznaczyć średnią gęstość naszej planety. Wedle jego pomiarów gęstość Ziemi równa jest 5,45 g/cm3 – błąd wyniósł jedynie 1%. Chodziło o zmierzenie przyciągania grawitacyjnego w warunkach laboratoryjnych.

Teoria powszechnego ciążenia Newtona była śmiałym uogólnieniem danych astronomicznych. Postulowała, że ta sama siła, którą na Ziemi nazywamy ciężarem, działa także we wszechświecie. Była trudna do przyjęcia m.in. dlatego, że przecież nie obserwujemy, aby dwie masy się przyciągały – siły te są zbyt małe. Próbowano je wprawdzie w XVIII wieku szacować badając przyciąganie dużych mas skalnych. W ich pobliżu zawieszony ciężarek (tzw. pion) powinien odchylać się od kierunku pionowego w sensie geometrycznym (czyli przedłużenia promienia Ziemi w punkcie obserwacji). Jak można to stwierdzić? Można wykonać pomiary astronomiczne wysokości (kątowej) tych samych gwiazd z dwóch miejsc: na południe i na północ od jakiejś góry. Kwadrant służący do pomiaru wysokości nad horyzontem ustawiamy korzystając z pionu. Ponieważ kierunki pionu w obu miejscach powinny się różnić, różnić się też będą nasze wyniki. Pierwszy raz pomiary takie wykonali Bouguer i La Condamine podczas wyprawy do Peru w celu zmierzenia kształtu Ziemi (pisałem o tym zagadnieniu: niemal cały rozgłos przypadł Maupertuis, który wcześniej przedstawił wyniki). Metoda taka miała jednak tę wadę, że trudno porządnie obliczyć masę jakiejkolwiek góry.

Od sierpnia 1797 do maja następnego roku przeprowadził Cavendish serię pomiarów siły grawitacji. Idea pochodziła od wielebnego Johna Michella, który planował takie doświadczenie, ale nie zdążył go wykonać przed śmiercią. Jego przyrządy trafiły do wielebnego Francisa Johna Hyde’a Wollastone’a, profesora w Cambridge, który nie miał warunków do przeprowadzenia eksperymentu, przekazał więc urządzenia Cavendishowi. W rzeczywistości Cavendish bardzo udoskonalił różne szczegóły i tylko dzięki temu osiągnął sukces. Główną częścią aparatury był drążek z parą ołowianych kul o średnicy 5 cm; drążek zawieszony był na cienkim drucie. Układ taki, gdy obrócić nieco drążek, wykonywał powolne drgania skrętne. Wyznaczając okres drgań, można było określić czułość tego układu na parę sił skręcających. Jeśli następnie zbliżyć do tej wagi skręceń inną parę dużych kul ołowianych (każda o masie 158 kg), położenie równowagi układu nieco się przesuwa. Cavendish mierzył odchylenia układu z drugiego pokoju za pomocą dwóch lunet. Chodziło o to, że układ pomiarowy był niezwykle czuły na wszelkie zakłócenia w rodzaju zmian temperatury, prądów powietrza czy drgań podłoża i dlatego, lepiej było, gdy był odizolowany od zewnętrznych wpływów. Uczony wyznaczał położenie równowagi obserwując starannie wahania układu i wyznaczając maksymalne wychylenia.

07861996_0062

Waga skręceń: lg – drut, hh – zawieszenie małych kul, L – lunety do obserwacji ruchu układu..

07861996_0063

Widok z góry: ww oraz w’w’ – duże kule obracające nieco położenie równowagi wagi skręceń.

To piękne i precyzyjne doświadczenie wyraża też chyba w jakimś stopniu osobowość Henry’go Cavendisha: ta ustawiana z delikatnością i uwagą aparatura, drgania w pustym pokoju, idealny obserwator na zewnątrz, dostrzegający wszystko, kontrolujący wszystko: pierwszy człowiek, który zobaczył na własne oczy, jak przyciągają się masy.

D.A. Henderson, synek Franklina i racjonalność decyzji o szczepieniu

W roku 2016 zmarł D.A. Henderson, epidemiolog, który walnie przyczynił się do zlikwidowania ospy na świecie. Był to wynik wieloletniej planowej pracy zespołu ludzi, którymi kierował najpierw w amerykańskiej CDC, a później w WHO. Fachowcy mówią, że to największy wymierny sukces w historii medycyny. Dramatem naszego świata jest fakt, że ludzie tacy jak on są niezbyt znani w przeciwieństwie do różnej maści celebrytów, skandalistów i kokainistów płci obojga.  OB-Henderson__13981471621450

Pisałem o epidemii w roku 1721 w Bostonie i tragicznym losie małego synka Benjamina Franklina. Stosując rachunek prawdopodobieństwa, nietrudno uzasadnić racjonalność decyzji o szczepieniu nawet przy niepełnych danych z XVIII wieku. Musimy pamiętać, że ówczesne szczepienie, tzw. inokulacja albo wariolizacja, różniły się od późniejszej metody. Zaszczepiano bowiem ludziom ospę ludzką, co w niektórych przypadkach kończyło się śmiercią. Dopiero pod koniec stulecia Edward Jenner odkrył, że bezpieczniejsze jest zaszczepianie ludziom ospy krowiej.

Zazwyczaj w podręcznikach matematyki mamy do czynienia z urnami, z których wyciąga się kule i w zależności od tego, co wyciągniemy, pojawiają się różne możliwości i budujemy drzewo rozmaitych ewentualności. Szczepienia są przykładem lepiej chyba przemawiającym do wyobraźni niż losowania białych i czarnych kul z urny.

Oto dane dla epidemii w Bostonie w roku 1721.

  • Liczba ludności miasta: 10 700
  • Poddanych inokulacji 281, z czego 6 zmarło
  • Spośród niepoddanych inokulacji 4917 zachorowało i przeżyło, 842 osoby zachorowały i zmarły, a 4654 osoby w ogóle nie zachorowały

Będziemy prawdopodobieństwa przybliżać częstościami, zazwyczaj nie mamy na to lepszego sposobu, należy pamiętać, że dane pochodzące z niewielkiej próby mogą się okazać niedokładne i dysponując większą statystyką, otrzymalibyśmy nieco inne wyniki. Mamy więc prawdopodobieństwo zgonu po inokulacji równe 6/281=0,021 i przeżycia inokulacji 1-0,021=0,979.

Prawdopodobieństwo zgonu wśród niepoddanych inokulacji oraz zarażonych jest równe 842/(842+4917)=0,146, a prawdopodobieństwo przeżycia w tej samej grupie równa się 1-0,146=0,854.

Prawdopodobieństwo zarażenia osoby niepoddanej inokulacji możemy próbować oszacować na podstawie naszych danych jako (4917+842)/(4654+4917+842)=0,553. Jest to szacowanie z dołu: musimy pamiętać, że część spośród 4654 osób, które nie zachorowały, przeszła już kiedyś ospę i była uodporniona na resztę życia. Jeśli prawdopodobieństwo zarażenia osoby, która nie przeszła ospy, oznaczymy przez x, mamy następujące drzewo możliwości.

qc23465.f1

Rysunek z pracy M Best, A Katamba, and D Neuhauser, Making the right decision: Benjamin Franklin’s son dies of smallpox in 1736.

Jeśli przyjmiemy x=0,553, to prawdopodobieństwo przeżycia bez inokulacji będzie równe (1-x)+x cdot 0,854=0,919. Jak widać, wartość ta jest mniejsza od prawdopodobieństwa przeżycia inokulacji, zatem statystycznie biorąc, zabieg ten zwiększa szanse przeżycia. Gdybyśmy mieli więcej informacji, wartość x mogłaby się okazać jeszcze większa, a to by oznaczało, że prawdopodobieństwo przeżycia bez inokulacji jest jeszcze mniejsze (można zapisać to prawdopodobieństwo jako 1-x+0,854x=1-0,146x, jest to więc malejąca funkcja zmiennej x).

Można też się zastanowić, jaka musi być najmniejsza wartość x, żeby inokulacja była racjonalnym zabiegiem. Granicą racjonalności będą równe prawdopodobieństwa zgonu: xcdot 0,146=0,021, skąd x> 0,144. Ponieważ dane wskazują, że prawie na pewno ostatni warunek jest spełniony, inokulacja jest racjonalnym zabiegiem.

Nie mamy, niestety, danych dla epidemii w 1736 roku w Filadelfii, gdzie mieszkał Benjamin Franklin z rodziną. Mamy jednak dane dla późniejszej epidemii w Bostonie w roku 1752.

  • Boston liczył wówczas 15 684 mieszkańców
  • 5998 osób przeszło już ospę i nie musiało się jej obawiać
  • 2124 osoby poddały się inokulacji (znacznie więcej niż w roku 1721), 30 z nich zmarło
  • 1843 osoby uciekły na wieś, by przeczekać epidemię, nie wiemy, jak wiele spośród nich zmarło.
  • 5719 osób nie poddało się inokulacji ani nie uciekło; 97% spośród nich zachorowało, a 539 zmarło

Prawdopodobieństwo zgonu po inokulacji równe jest 30/2124=0,014; prawdopodobieństwo przeżycia: 0,986. Wartości zbliżone są do tego, co otrzymaliśmy wyżej dla roku 1721.

Wśród niezaszczepionych i narażonych na zachorowanie śmiertelność była równa 539/(0,97cdot 5719)=0,097, prawdopodobieństwo przeżycia choroby równało się 1-0,097=0,903. Oznaczało to, że nie robiąc nic, ma się prawdopodobieństwo przeżycia 0,03+0,97cdot 0,903=0,906. Należy porównywać to z wartością 0,986 dla zaszczepionych. Inokulacja była więc znacznie lepszą decyzją.

Statystyka z roku 1752 obejmuje jeszcze możliwość ucieczki z miasta. Była to najprostsza metoda unikania chorób epidemicznych i kogo było na nią stać, ten ją stosował. Nie znamy prawdopodobieństwa zachorowania wśród tych, co uciekli. Oznaczmy je przez y. Mamy więc następujące drzewo możliwości.

qc23465.f2

(Rysunek z pracy jw.)

Można zadać pytanie, jakie powinno być y, aby ucieczka była lepszym wyjściem niż pozostanie w Bostonie i poddanie się inokulacji. Prawdopodobieństwo zgonu osoby uciekającej to 0,097y, należy je porównać z prawdopodobieństwem zgonu po inokulacji, równym 0,014. A zatem, jeśli y< 0,144, to ucieczka jest racjonalna. Trudno jest oczywiście oszacować wartość y, zależy ona np. od tego, czy uciekniemy, zanim jeszcze epidemia się rozwinie, czy w jej późniejszej fazie (choroba ma pewien okres inkubacji, możemy więc wyjeżdżając czuć się dobrze mimo zarażenia). W dodatku uciekając, nadal nie mamy odporności na ospę, a w Bostonie w ciągu osiemnastego wieku większe epidemie wystąpiły w latach 1721, 1730, 1752, 1764, 1776, 1778 oraz 1792. Można się było spodziewać, że za kilkanaście lat choroba znów się pojawi.

Zabdiel Boylston, czarna ospa w Bostonie i siła charakteru (1721-1722)

W XX wieku czarna ospa zabiła 300 mln. ludzi – trzy razy więcej niż zginęło w obu wojnach światowych. I w tym samym XX wieku udało się tę chorobę wyeliminować. Można, oczywiście, buntować się przeciwko nowoczesnej cywilizacji, ale żadna z tych 300 mln osób nie zrozumiałaby, o co nam właściwie chodzi. Nie ma jednak szczepionki przeciwko głupocie i w naszych światłych czasach dzieci chorują albo będą chorować na rozmaite groźne przypadłości jedynie dlatego, że ich rodzice albo rodzice ich kolegów są podejrzliwymi idiotami, którzy sądzą, że wiedzą lepiej niż eksperci.

W XVIII wieku nie znano przyczyn ani mechanizmu szerzenia się ospy, jasne było tylko, że jest to choroba zakaźna. Ponieważ objawy występują dopiero po 12 dniach, więc izolacja chorych była na ogół spóźniona i zdążyli oni już zarazić osoby, z którymi się stykali. Wiadomo też było z obserwacji, że ci, którzy przeszli chorobę i przeżyli, byli na nią później odporni. Ryzyko było tak duże, że w Anglii w XVII wieku był zwyczaj, by nie zapisywać majątku dzieciom, zanim nie przeszły ospy, ponieważ ich przyszłość była wciąż bardzo niepewna. Spośród tych, co przeżyli, wielu było oślepionych albo oszpeconych na całe życie. Jedną z takich osób, których urodę zniszczyła ospa, była Mary Wortley Montagu, arystokratka, pisarka (sama nauczyła się łaciny w ojcowskiej bibliotece) i żona ambasadora brytyjskiego w Konstantynopolu. Dowiedziała się ona o praktyce wariolizacji stosowanej w imperium osmańskim: pobierano płyn z pęcherzyków na skórze chorego i zaszczepiano go osobom zdrowym. Pacjenci chorowali wówczas na ogół w sposób łagodny, nabywając przy tym odporności. Nie zawsze wariolizacja przynosiła pożądane efekty, zdarzały się przy jej stosowaniu wypadki śmiertelne. Montagu propagowała tę metodę w Londynie, przekonując m.in. księżnę Walii Karolinę do zaszczepienia dzieci. Metoda była kontrowersyjna. Wyglądała na jakiś rodzaj zabobonu, w dodatku przychodziła do Europy z krajów niecieszących się zaufaniem w sprawach medycznych i naukowych: stosowano ją na Kaukazie, w Afryce. W Konstantynopolu szczepieniami zajmowały się zwykle stare kobiety, co też nie wyglądało wiarygodnie w oczach Zachodu. Z punktu widzenia dzisiejszej wiedzy wariolizacja stanowiła postęp, lecz była obarczona ryzykiem. Dopiero pod koniec XVIII wieku Edward Jenner wynalazł skuteczną odmianę tej metody szczepienia: należy zaszczepiać ospę krowią, pacjenci wówczas nie chorują i nabierają odporności na ospę ludzką. Także i wtedy nie rozumiano, dlaczego szczepienie jest skuteczne i jak działa, opierano się wyłącznie na obserwacjach.

W kwietniu 1721 roku do Bostonu, stolicy Massachusetts, zawinął okręt „Seahorse”, płynący z Barbadosu. Jeden z członków załogi zachorował na ospę i został odizolowany w domu z czerwoną ostrzegawczą flagą. Później zachorowali także inni marynarze z tej jednostki i stało się jasne, że kwarantanna nie wystarczy, ponieważ choroba zdążyła się już rozprzestrzenić. Ówczesny Boston był małym miastem, liczącym sobie około jedenastu tysięcy mieszkańców. Rządy duchowe sprawowała w nim dynastia purytańskich ministrów: wiekowy Increase Mather i jego dobiegający sześćdziesiątki syn, Cotton Mather. Obaj zapisali się poprzednio w annałach ścigania czarownic i czarowników: to za ich aprobatą toczyła się sprawa w Salem w roku 1692. Wszechstronnie wykształcony w Ameryce i w Anglii, Cotton Mather, członek Towarzystwa Królewskiego, był zarazem ciasnym bigotem, głęboko wierzącym w realność i szkodliwość czarów. W swym dziele Pamiętne zrządzenia opatrzności opisywał przypadek irlandzkiej praczki, niejakiej Glover, która jako czarownica nękała pobożną rodzinę Goodwinów, którzy podczas owych diabelskich ataków głuchli, niemieli, ślepli albo wszystko to na raz. Mather przyczynił się do prześladowań w Salem, choć zarazem podkreślał potrzebę niezbitych dowodów w każdym przypadku. Teraz, wobec zagrożenia ospą, także starał się interweniować i tym razem jego wpływ okazał się jednoznacznie korzystny. Mather przekonany był bowiem do wariolizacji: czytał o niej wcześniej w „Transactions of the Royal Society”, miał też w domu niewolnika z Afryki, który mu opowiadał o tej metodzie. Minister skierował do lekarzy bostońskich pismo przedstawiające zalety wariolizacji. Medycy zareagowali wrogo, obawiając się, że wskutek wariolizacji epidemia jeszcze bardziej się rozszerzy. Wrogo też reagowali niektórzy duchowni. Ich zdaniem człowiek nie powinien ingerować w naznaczony przez Boga bieg wypadków. Znaleziono nawet pierwowzór wariolizacji w Księdze Hioba: „Odszedł szatan sprzed oblicza Pańskiego i obsypał Hioba trądem złośliwym, od palca stopy aż do wierzchu głowy. [Hiob] wziął więc skorupę, by się nią drapać siedząc na gnoju” (Hi 2, 7-8). A więc także Pismo św. wskazywało więc wyraźnie, że nie należy nikogo szczepić. Pismo św, jak zawsze, wskazuje we wszystkich kierunkach jednocześnie.

Jedynie chirurg Zabdiel Boylston gotów był spróbować wariolizacji. Nie miał on wykształcenia akademickiego, uczył się medycyny od swego ojca i innego jeszcze lekarza, w Ameryce nie było zresztą żadnej szkoły medycznej. Boylston dał się poznać jako sprawny chirurg, który nie obawiał się przeprowadzać ryzykownych operacji, jak usuwanie kamieni żółciowych czy pierwsza mastektomia w Ameryce. Operacje przeprowadzało się bez znieczulenia, należało wszystko robić błyskawicznie, żeby pacjent nie zmarł wskutek szoku i upływu krwi. Później groziły mu oczywiście wszelkie infekcje, Boylston był ponoć pedantycznie czysty i zapewne pomagało to jego pacjentom (nikt wówczas nie kojarzył chirurgii z czystością). Pierwsze szczepienia ospy przeprowadził na własnym synu oraz parze swych niewolników: ojcu i synu. Wszyscy trzej przeżyli. Boylston zaczął więc stosować tę metodę, choć przyjmowano to wrogo i lekarz obawiał się o swe bezpieczeństwo. W pewnym momencie rada miejska oficjalnie zakazała mu tych praktyk. Nie ujął się też za nim Mather, nie do końca chyba przekonany do wariolizacji (nie zaszczepił np. własnego syna). Ostatecznie Boylston przeprowadzał szczepienia na niezbyt dużą skalę, tylko u pacjentów, którzy sami się z tym do niego zwracali. Był także ostro krytykowany w miejscowej prasie. W tygodniowej gazecie wydawanej przez Jamesa Franklina (terminował u niego wtedy młodszy brat, Benjamin, który z czasem miał zostać najsławniejszym uczonym Ameryki) szczepienia atakowano jako szkodliwy przesąd. W pewnym stopniu postawa gazety wynikała z jej opozycyjności: James Franklin był przeciwny rządom Mathera i atmosferze moralnego terroru wprowadzanej przez purytanów, nietrudno więc było go przekonać, że duchowny także i tym razem broni jakichś przesądów. Ostatecznie w ciągu niecałego roku zachorowało w Bostonie około 6000 osób – ponad połowa ludności (około tysiąca bogatszych wyjechało na wieś i tam przeczekali epidemię). Zmarły w tym czasie na ospę 844 osoby, czyli 14% zainfekowanych. Za Boylstonem przemawiały liczby: spośród 286 osób, jakie zaszczepił, zmarło jedynie sześć. W dodatku nie zawsze było jasne, czy osoby te były zdrowe w momencie wariolizacji, być może choroba już się u nich rozwijała, lecz nie dawała jeszcze widocznych objawów. Tak czy inaczej było to tylko 2,4% – statystycznie biorąc, wariolizacja działała.

smallpox account-x

Doświadczenia swe Boylston opisał w książce, przyjęto go też do Towarzystwa Królewskiego. Wariolizację zaczęto, choć z oporami, uznawać. Nabrał do niej przekonania także Benjamin Franklin, choć obawiał się związanego z nią ryzyka. Pisze w swej autobiografii:

W roku 1736 straciłem jednego z mych synów, pięknego czteroletniego chłopca. Umarł na ospę, którą się w zwykły sposób zaraził. Długo i gorzko żałowałem potem i nadal żałuję, że nie kazałem go szczepić. Wspominam o tym ku przestrodze rodziców, którzy nie szczepią swych dzieci z obawy, że mogłyby wskutek tego umrzeć, czego nigdy nie mogliby sobie wybaczyć. Mój przykład świadczy, że żałować trzeba nieraz i w przeciwnym wypadku, a wobec tego lepiej wybierać drogę bezpieczniejszą. (przeł. J. Stawiński)

Czemu rozkład Gaussa jest ,,normalny”? De Moivre, wzór Stirlinga i Laplace

Skąd się bierze wszechobecność rozkładu Gaussa? Jednym z powodów jest rozkład dwumianowy. Rozpatrzmy prościutki model. Przyjmijmy, że wzrost dorosłego mężczyzny warunkowany jest czterdziestoma genami w taki sposób, że każdy z nich może zwiększyć wzrost o 2 cm ponad pewne minimum albo nie zwiększyć. Zygota, z której powstaliśmy, wylosowała 40 genów i każdy z nich z prawdopodobieństwem p=\frac{1}{2} mógł dodać nam 2 cm wzrostu. Jeśli za minimum fizjologiczne uznamy 140 cm, to możliwy jest każdy wynik z przedziału (140, 220). Oczywiście, nie należy traktować tego przykładu dosłownie. Matematycznie oznaczałoby to 40 niezależnych losowań z prawdopodobieństwem sukcesu p. Rozkład liczby sukcesów wygląda wówczas następująco:

Dyskretny rozkład dwumianowy został tu przedstawiony z przybliżającym go rozkładem Gaussa. Naszym celem będzie zrozumienie, czemu takie przybliżenie działa, gdy mamy do czynienia z dużą liczbą prób.

Zacznijmy od samego rozkładu dwumianowego. Dla dwóch prób sytuacja wygląda tak (p – prawdopodobieństwo sukcesu, q=1-p – prawdopodobieństwo porażki):

Każda droga z lewa na prawo oznacza konkretny wynik. Wzdłuż drogi prawdopodobieństwa się mnożą, ponieważ są to niezależne próby (definicja zdarzeń niezależnych). Zeru sukcesów odpowiada prawdopodobieństwo q^2, dwóm sukcesom p^2. Jeden sukces możemy osiągnąć na dwa sposoby: sukces-porażka albo porażka-sukces, prawdopodobieństwa należy dodać, jeśli interesuje nas wyłącznie całkowita liczba sukcesów, a nie jej konkretna realizacja. Łatwo zauważyć związek z dwumianem Newtona

(p+q)^n=(p+q)(p+q)\ldots (p+q),

gdzie mamy n czynników. Każdy wynik to wybór jednego z dwóch składników nawiasu: p albo q. Mnożymy je kolejno przez siebie, co odpowiada losowaniom, a następnie dodajemy. Oczywiście suma wszystkich prawdopodobieństw równa jest 1. Składniki zawierające k sukcesów mają czynnik p^k. Wzór Newtona (znany zresztą przed Newtonem) daje nam

(p+q)^n=\displaystyle \sum_{k=0}^{n}{n\choose k}p^k q^{n-k}.

Prawdopodobieństwo k sukcesów jest równe

P(k)=\displaystyle {n\choose k}p^k q^{n-k}.

Jest to nasz punkt wyjścia. Przy dużych wartościach n obliczanie symboli Newtona było w XVIII wieku trudne, ponieważ występują tam silnie dużych liczb. Zwłaszcza w rejonie środka rozkładu obliczenia takie były kłopotliwe, ponieważ zostaje wiele czynników, które się nie skracają. Abraham de Moivre, francuski protestant zmuszony do emigracji z ojczyzny z przyczyn religijnych, spędził życie w Londynie, ucząc matematyki. Podobno jeździł po Londynie od ucznia do ucznia z kolejnymi kartkami wyrwanymi z Matematycznych zasad Newtona i w wolnym czasie zgłębiał treść tej masywnej księgi. De Moivre podał sposób przybliżania P(k) oraz wartości silni – to drugie przybliżenie nazywamy dziś wzorem Stirlinga od nazwiska drugiego matematyka, który w tym czasie zajmował się tym zagadnieniem.

Zaczniemy od P(k). Jeśli spojrzeć na histogram z obrazka rzuca się w oczy ogromna dysproporcja miedzy prawdopodobieństwami różnych wyników. Dlatego będziemy szukać przybliżenia nie dla P(k), lecz dla \ln P(k).

Wykres przedstawia histogram \ln P(k), a także przybliżającą go parabolę. Każdą przyzwoitą funkcję możemy przybliżyć rozwinięciem Taylora:

f(k)=f(k_0)+(k-k_0)f'(k_0)+\dfrac{1}{2!}(k-k_0)^2 f''(k_0)+\ldots.

W maksimum znika pierwsza pochodna, mamy więc

f(k)=f(k_0)+\dfrac{ (k-k_0)^2 f''(k_0)}{2}+\ldots.

Naszą funkcją jest

f(k)=\ln P(k)=\ln n!-\ln k!-\ln (n-k)! +k \ln p+(n-k) \ln q.

Potrzebujemy pochodnej z silni dla dużych wartości k oraz (n-k). Pochodna to przyrost funkcji odpowiadający jednostkowemu przyrostowi argumentu. Ponieważ

\ln k!=\ln 1+\ln 2+\ldots \ln k,

powinna ona być równa

\dfrac{d\ln k!}{dk}=\ln k.

Poniżej uzasadnimy to precyzyjnie, choć ostatni wzór powinien być zrozumiały intuicyjnie: nachylenie funkcji logarytmicznej stopniowo maleje, więc sumę można coraz lepiej przybliżać za pomocą pola pod krzywą.

Odpowiada to przybliżeniu

\ln k! \approx \displaystyle \int_{1}^{k} \ln t \, dt \Rightarrow \dfrac{d\ln k!}{dk}=\ln k.

Warunek na maksimum funkcji przybiera postać

\dfrac{d\ln P(k)}{dk}=-\ln k+\ln (n-k)+\ln p -\ln q =0 \Rightarrow k_0=np.

Druga pochodna równa jest

\dfrac{d^2 \ln P(k)}{dk^2}=-\dfrac{1}{k}-\dfrac{1}{n-k}=-\dfrac{1}{npq}.

Ostatnia równość daje wartość pochodnej w punkcie k=np. Nasze przybliżenie przybiera więc postać

P(k)=P(0) \exp\left(-\dfrac{(k-np)^2}{2npq}\right)+\ldots.

Jest to rozkład Gaussa o wartości średniej np oraz szerokości (odchyleniu standardowym) npq. Wartość P(0) można wyznaczyć z warunku normalizacji: pole pod naszą krzywą powinno być równe 1. Można ściśle pokazać, że przy dużych wartościach n wyrazy wyższych rzędów są do pominięcia przy obliczaniu prawdopodobieństw: różnice między parabolą a histogramem na wykresie dotyczą sytuacji, gdy prawdopodobieństwa są bardzo małe.

Przyjrzymy się teraz bliżej obliczaniu silni z dużych liczb. Zacznijmy od następującej funkcji zdefiniowanej jako całka:

g(t):=\displaystyle \int_{0}^{\infty}\exp(-\alpha t)\, dt,\alpha>0.

Różniczkując ją kolejno n razy po \alpha i kładąc na koniec \alpha=1, otrzymamy

n!=\displaystyle \int_{0}^{\infty} t^{n}\exp(- t)\, dx\equiv \Gamma (t+1).

Otrzymaliśmy funkcję gamma Eulera, która jest uogólnieniem silni, ponieważ zdefiniowana jest nie tylko dla wartości całkowitych n, lecz może być uogólniona na płaszczyznę zespoloną i określona wszędzie oprócz argumentów całkowitych ujemnych. Nam wystarczą tutaj wartości rzeczywiste dodatnie, szukamy przybliżenia dla dużych n. Zapiszmy funkcję podcałkową w postaci wykładniczej i zastosujmy rozwinięcie Taylora wokół maksimum, dokładnie tak jak powyżej dla funkcji P(k):

n!=\displaystyle \int_{0}^{\infty} \exp(n\ln t- t)\, dx\approx \exp(n\ln n-n)\int_{0}^{\infty} \exp\left(-\frac{(t-n)^2}{2n}\right) dt.

Wykres przedstawia przybliżenie gaussowskie oraz (na czerwono) wartości funkcji po wyłączeniu czynnika \exp (n\ln n-n). W przybliżeniu gaussowskim możemy rozszerzyć dolną granicę całkowania do -\infty, co nawet zmniejsza błąd przy niedużych wartościach n, a niczego nie psuje przy dużych wartościach n. Jeśli przeskalujemy funkcję gaussowską tak, aby miała jednostkową szerokość, porównanie wypadnie jeszcze lepiej.

 

Widzimy więc, że można ostatnią całkę wziąć po całej prostej. Jej wartość jest równa \sqrt{2\pi n}. Otrzymujemy wzór Stirlinga:

\ln n!\approx n\ln-n +\ln\sqrt{2\pi n}+O(1/12n).

Zaznaczyliśmy też wielkość następnego wyrazu w szeregu malejących potęg n. W wielu zastosowaniach można pominąć zupełnie całkę gaussowską i wnoszony przez nią wyraz \sqrt{2\pi n}. Jak się trochę popracuje nad dalszymi wyrazami rozwinięcia Taylora, można otrzymać i tę poprawkę 1/12n.

Pierre Simon Laplace rozwinął techniki szacowania wartości asymptotycznych całek. Jego wyprowadzenie wzoru Stirlinga było elegantsze, lecz rachunkowo trudniejsze (wymagało odwrócenia rozwinięcia w szereg). Laplace wykazał także, iż sumy zmiennych losowych zachowują się jak zmienne gaussowskie także w ogólniejszych sytuacjach niż ta przez nas rozpatrywana. Innymi słowy pierwszy zauważył, że zachodzi tzw. centralne twierdzenie graniczne. Ścisły dowód pojawił się znacznie później.

Skąd się wzięła liczba pi w rozkładzie Gaussa, czyli o niepojętej skuteczności matematyki w naukach przyrodniczych

Eugene Wigner, należał do „Marsjan”, jak nazywano w Stanach Zjednoczonych grupę niezwykle wybitnych uczonych z Węgier. Na pytanie Enrica Fermiego, dlaczego wysoce rozwinięte cywilizacje z kosmosu nie odwiedziły do tej pory Ziemi, Leo Szilard odpowiedział, że owszem, już tutaj są, ale sami siebie nazywają Węgrami. Była to niezwykła konstelacja talentów: Paul Erdős, Paul Halmos, Theodore von Kármán, John G. Kemeny, John von Neumann, George Pólya, Leó Szilárd, Edward Teller. Ukształtowały ich naukowo Niemcy, zwłaszcza Getynga i Berlin. Po dojściu nazistów do władzy uczeni ci z racji żydowskiego pochodzenia zmuszeni zostali do emigracji i w Stanach Zjednoczonych pracowali nad aerodynamiką, budową bomby atomowej i wodorowej, budową pierwszych komputerów, jak też dokonywali odkryć w matematyce czystej, jak najdalszych od zastosowań. Wigner był ekspertem w zastosowaniach teorii grup w mechanice kwantowej, laureatem Nagrody Nobla, a więc kimś, kto na co dzień stykał się z tym, że abstrakcyjna z pozoru matematyka znajduje wciąż nowe eksperymentalne potwierdzenia.

Słynny jest esej Wignera pt. Niepojęta skuteczność matematyki w naukach przyrodniczych. Zaczyna się on następująco:

Istnieje opowiadanie o dwóch ludziach, którzy przyjaźnili się ze sobą w czasie wyższych studiów, a którzy spotkawszy się, opowiadają sobie o swojej pracy. Jeden z nich zajął się statystyką i badał trendy społeczne. Pokazał on dawnemu koledze jeden ze swych artykułów. Artykuł rozpoczynał się, jak zwykle, uwagami na temat rozkładu Gaussa i autor wyjaśnił swemu rozmówcy znaczenie poszczególnych symboli dla sytuacji aktualnego społeczeństwa, dla przeciętnego społeczeństwa i tak dalej. Jego kolega okazał pewne niedowierzanie i nie był zupełnie pewny, czy przyjaciel nie żartuje sobie z niego. „Skąd ta twoja wiedza?” brzmiało jego pytanie. „I czym jest ten tu symbol?”. „Och”, odpowiedział statystyk, „to jest \pi”. „Co to jest?” „Stosunek obwodu koła do jego średnicy”. „No, teraz już twoje dowcipy zaszły za daleko”, rzekł na to kolega, „z całą pewnością społeczeństwo nie ma nic wspólnego z obwodem koła”. (przeł. J. Dembek)

Matematyka jest sztuką wyprowadzania wniosków, najlepiej nieoczywistych, z pewnych przyjętych założeń. W zasadzie nie możemy więc za jej pomocą otrzymać niczego istotnie nowego, co nie tkwiłoby niejako w tych założeniach. Jednak droga od np. podstawowych praw arytmetyki i definicji liczb pierwszych do sformułowania Wielkiego Twierdzenia Fermata i jego dowodu zajęła zajęła ludzkości parę tysięcy lat i przez ostatnie stulecia wielu wybitnych uczonych straciło całe lata na bezowocne próby. Jednak najbardziej zdumiewającym aspektem matematyki są jej zastosowania w innych naukach. Nie rozstrzygniemy tu pytania, czy kryje się w tym głęboka tajemnica, czy też w zasadzie rzecz jest trywialna (bo np. matematyka w gruncie rzeczy pochodzi z doświadczenia albo, jak wierzył Platon, świat zmysłowy stanowi jedynie niedoskonałą kopię świata idei, gdzie linie nie mają grubości, a sfery są zbiorami punktów równooddalonych od swego środka).

W zastosowaniach matematyki, takich jak statystyka albo fizyka, musimy przyjąć wiele dodatkowych założeń, które często są trudne do bezpośredniego zweryfikowania. Mimo to wiemy np., że rozkład Gaussa, krzywa dzwonowa, stosuje się nie tylko do rozkładu prędkości cząsteczek w gazie, ale i np. cen akcji albo wzrostu grupy ludzi (w dwóch ostatnich przypadkach lepsze wyniki daje rozpatrywanie logarytmu tych wielkości). Istnieją matematyczne powody wszędobylskości rozkładu Gaussa: jeśli dana wielkość jest sumą zmiennych losowych, to można oczekiwać, iż bedzie dążyć do rozkładu Gaussa, gdy liczba tych zmiennych staje się coraz większa i gdy są one od siebie niezależne.

Wróćmy teraz do anegdoty Wignera. Skąd wzięła się liczba \pi w rozkładzie Gaussa? Rozkład ten ma postać

p(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}},

gdzie \sigma jest parametrem opisującym szerokość krzywej: może ona być bardziej albo mniej rozłożysta. Poniważ opisuje prawdopodobieństwa, pole powierzchni pod krzywą musi być równe 1. Na wykresie \sigma=1.

Wartość p(0)  jest więc związana z \pi:

p(0)=0,39894\approx \dfrac{1}{\sqrt{2\pi}}.

Liczba \pi pojawia się tu dlatego, że pole powierzchni pod krzywą musi być równe 1. Inaczej mówiąc chodzi o wartość następującej całki (gdzie dla wygody pzbyliśmy się dwójki):

\displaystyle \int_{-\infty}^{\infty} e^{-x^{2}} dx=\sqrt{\pi}.

Całka nieoznaczona w tym wypadku nie wyraża się przez funkcje elementarne i obliczenie tej wartości wymaga pomysłu. Prawdopodobnie całkę tę pierwszy obliczył Pierre Simon Laplace (i to co najmniej na dwa sposoby). Prostszą metodę podał Denis Poisson, a my przedstawimy współczesne wariacje tej metody. Należy rozpatrzyć całkę dwuwymiarową po całej płaszczyżnie xy:

I^2= \displaystyle \iint e^{-x^2-y^2} dx dy=\left( \int e^{-x^2} dx\right)^2.

Zadanie sprowadza się do obliczenia objętości pod powierzchnią przypominającą (nieskończony) kapelusz z=e^{-x^2-y^2}.

Narysowaliśmy tylko jego środkową część. Inaczej mówiąc, jest to bryła powstająca z obrotu krzywej z=e^{-r^2} wokół osi z.

Objętość tej bryły możemy obliczyć dzieląc ją na walce o grubości dz i promieniu r^2=-\ln z:

I^2=-\displaystyle \int_0^1 \pi \ln z dz=\pi.

Możemy też podzielić naszą bryłę na wydrążone walce o grubości dr, promieniu r i wysokości z:

I^2=\displaystyle \int_0^{\infty} 2\pi r e^{-r^2}=\pi.

Ostatnią całkę oblicza się przez oczywiste podstawienie t=r^2.

Oba te rozwiązania sugerowałyby, że „nasze” \pi z rozkładu Gaussa ma jednak coś wspólnego z okręgami. W matematyce związki arytmetyki z geometrią są wszakże nieoczywiste: pokazywaliśmy przykłady szeregów Leibniza i Newtona prowadzących do liczby \pi (por. też tutaj). Także w naszym przypadku możemy sprowadzić problem do arytmetyki.

Rozkład Gaussa jest granicą rozkładu dwumianowego, czyli np. rozkładu liczby orłów (ktoś mniej patriotyczny niż ja mógłby rozważać liczbę reszek, ale my odrzucamy takie podejście) w serii rzutów monetą. Prawdopodobieństwa wyglądają wówczas następujaco:

Na histogramie przedstawiliśmy przypadek n=20 rzutów oraz stosowny rozkład Gaussa, który jest, jak widać całkiem dobrym przybliżeniem histogramu. Obliczmy prawdopodobieństwo, że w połowie rzutów otrzymamy orła – co odpowiada maksimum histogramu i krzywej Gaussa. Ponieważ prawdopodobieństwa wyrzucenia orła i reszki są równe, więc prawdopodobieństwo każdej serii jest równe iloczynowi: (\frac{1}{2})^n. Można przy tym tę połowę orłów uzyskać w rozmaitej kolejności – każdy konkretny wynik będzie wybraniem spośród zbioru n elementów podzbioru n/2 orłów. Można to zrobić na {n}\choose{n/2} sposobów (liczba kombinacji). Prawdopodobieństwo w środku naszego rozkładu będzie zatem równe (wzięliśmy n=2m):

P_m= \displaystyle {{2m}\choose{m}} \dfrac{1}{2^{2m}}.

Gdzie jak gdzie, ale w tym wyrażeniu nie ma chyba liczby \pi? Oczywiście, jest. Okazuje się, że

\displaystyle \lim_{m\rightarrow\infty} \sqrt{m}P_m=\dfrac{1}{\sqrt{\pi}}.

Inaczej mówiąc dla dużych wartości m mamy P_m\sim \frac{1}{\sqrt{\pi m}} – pojawia się pierwiastek z \pi, zmodyfikowany dodatkowym czynnikiem, który łatwo zrozumieć: rozkład dwumianowy przy rosnącym m coraz bardziej przypomina rozkład Gaussa, ale też staje się coraz szerszy, co skutkuje mniejszą wysokością, i tę właśnie zależność opisuje powyższy wzór.

W jaki sposób otrzymać ten wynik? Leonhard Euler w 1736 r. uzyskał przedstawienie funkcji sinus za pomocą nieskończonego iloczynu. Pomysł jest prosty. Każdy wielomian możemy przedstawić za pomocą iloczynu

f(x))=a(x-x_1)(x-x_2)\ldots (x-x_n),

gdzie x_1,x_2,\ldots, x_n to pierwiastki tego wielomianu, a jest stałą. Funkcja sinus jest też czymś w rodzaju wielomianu, tyle że ma nieskończenie wiele pierwiastków: 0, \pm\pi,\pm 2\pi,\ldots. Możemy zatem spróbować przedstawić ją następująco:

\sin x=x(1-\frac{x}{\pi}) (1+\frac{x}{\pi}) (1-\frac{x}{2\pi}) (1+\frac{x}{2 \pi}) \ldots.

Czynniki w nawiasach zapisane są tak, by dążyły do 1 wraz ze wzrostem numeru. Intuicja Eulera była trafna, przyglądając się temu rozwinięciu można uzyskać ciekawe wyniki, jak np.

\displaystyle \dfrac{\pi^2}{6}=1+\dfrac{1}{4}+\dfrac{1}{9}+\ldots.

Gdy podstawimy do tego iloczynu x=\pi/2, otrzymamy przedstawienie liczby \pi za pomocą nieskończonego iloczynu, tzw. wzór Wallisa. Nieco go przekształcając, można uzyskać naszą granicę \sqrt{m}P_m.

Kolejność historyczna była taka: najpierw John Wallis w roku 1655 odgadł swój wzór. Później w roku 1733 Abraham de Moivre udowodnił naszą równość. Jeszcze później, w 1736 r. Euler odkrył iloczyn nieskończony dla sinusa, w wieku XIX Karl Weierstrass pokazał, że pewna grupa wyjątkowo regularnych funkcji (funkcje całkowite) mają w istocie postać iloczynów.

Szczegół dotyczący P_m. Rozkład dwumianowy ma szerokość \sigma=\sqrt{m/2}, zatem związek de Moivre’a daje to samo co współczynnik \frac{1}{\sqrt{2\pi}\sigma} .

 

 

 

Joseph Louis Lagrange i „wektor Laplace’a-Rungego-Lenza” (1781)

Pisałem kiedyś o zasadzie Arnolda: „Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy”. Przykładem może tu być tzw. wektor Rungego-Lenza, niemal odkryty przez Jakoba Hermanna, a na pewno odkryty przez Josepha Lagrange’a.

Joseph Louis Lagrange jest mało znany poza kręgiem profesjonalnych matematyków i fizyków. Wiele jego dokonań weszło do języka nauki i stała się dobrem powszechnym, funkcjonującym często bezimiennie. Urodzony w Turynie jako Giuseppe Luigi Lagrangia, poddany królestwa Sardynii, syn urzędnika królewskiego francuskiego pochodzenia, odkrył w sobie talent matematyczny jako nastolatek-samouk. Ojciec stracił fortunę w ryzykownych spekulacjach i syn potrzebował płatnego zajęcia. Pod koniec życia uczony twierdził, że gdyby nie potrzeba zarabiania, pewne nie zostałby matematykiem. Zapewne przesadzał. Talent tej wielkości nie daje chyba możliwości wyboru. W każdym razie młody Lagrange zadziwił Leonharda Eulera, z którym zaczął korespondować na temat rachunku wariacyjnego. W wieku dziewiętnastu lat został też mianowany sostituto – „zastępcą” profesora matematyki w szkole artyleryjskiej w Turynie. Uczył tam młodzieńców starszych od siebie, artyleria była uczonym rodzajem wojsk – to ze szkoły artylerii Napoleon Bonaparte wyniósł swój szacunek do przedmiotów ścisłych. Niezbyt przedsiębiorczy i cichy Lagrange spędził w Turynie wiele lat. Dopiero w wieku trzydziestu lat dzięki protekcji Jeana d’Alemberta został powołany do Akademii Nauk w Berlinie w miejsce Eulera, który wolał carową Katarzynę II od Fryderyka II pruskiego. Piemontczyk spędził w Prusach dwie dekady, narzekając na chłody i pisząc wciąż nowe ważne prace. W Berlinie powstało jego największe dzieło Méchanique analitique (sic!), opublikowane w dwóch tomach już w Paryżu, gdzie spędził resztę życia. Tam podczas Rewolucji zajmował się wprowadzeniem metrycznego systemu miar oraz nowego kalendarza i nowego podziału doby. Metr zdefiniowano wtedy jako jedną czterdziestomilionową część południka paryskiego, lecz babiloński, sześćdziesiątkowy podział godzin i minut okazał się zbyt głęboko zakorzeniony i tutaj zmiany się nie przyjęły. Został też Lagrange pierwszym profesorem analizy w École polytechnique, elitarnej i bardzo nowoczesnej na swe czasy szkole wyższej, modelu dla licznych politechnik na całym świecie.

Książka Lagrange’a była, niemal równo sto lat po Zasadach matematycznych Isaaca Newtona, podsumowaniem dorobku Newtonowskiej mechaniki za pomocą metod analitycznych spod znaku Leibniza, Bernoullich i Eulera.

W książce tej nie znajdzie Czytelnik żadnych rysunków. Metody, jakie w niej wykładam, nie wymagają żadnych konstrukcji ani rozumowań geometrycznych bądź mechanicznych, lecz jedynie operacji algebraicznych poddanych regularnym i jednolitym procedurom. Ci, co kochają Analizę, z przyjemnością zobaczą, jak mechanika staje się jej kolejną gałęzią i będą mi wdzięczni za takie poszerzenie jej domeny.

Newton byłby zapewne wstrząśnięty lekturą dzieła Lagrange’a. Zwyciężyła w nim algebra, metody formalnego przekształcania równań. Algorytmy zwyciężyły z wyobraźnią, ponieważ do ich stosowania wystarczy trzymać się prostych reguł. W ten sposób druga zasada dynamiki stała się układem trzech (lub więcej, zależnie od problemu) równań różniczkowych. Zagadnienie trzech przyciągających się ciał – jeden z wielkich problemów epoki, wymaga dwunastu całkowań. Lagrange pokazał w jednej ze swych prac, jak z dwunastu potrzebnych całkowań, zostaje do wykonania tylko siedem. Osiągnięcia tego rodzaju musiały być elitarne, choć miały też szersze znaczenie. Wielkim problemem epoki ponewtonowskiej była stabilność Układu Słonecznego. Newton przypuszczał, że wzajemne przyciąganie planet doprowadzi z czasem do rozregulowania się kosmicznego zegara, co zresztą może leżeć w boskim planie stwórczym: jako gorliwy czytelnik i komentator Apokalipsy św. Jana traktował znaną nam postać świata jako przejściową, próbował nawet oszacować, kiedy nastąpi ponowne przyjście Chrystusa. Lagrange, a po nim Pierre Simon Laplace (obaj raczej indyferentni religijnie) podjęli zagadnienie stabilności Układu Słonecznego. Wyglądało na to, że system planetarny zmienia się jedynie okresowo i nie ma w nim jednokierunkowych zmian parametrów orbit takich, jak ich rozmiar czy mimośród – a zatem grawitacja nie musi prowadzić do katastrofy kosmicznej. Zagadnienie to okazało się zresztą bardziej skomplikowane, niż sądzili Lagrange i Laplace. Pokazał to pod koniec wieku XIX Henri Poincaré. W wieku XX zrozumiano, że w układach takich jak planetarne powszechnie występują zjawiska chaotyczne. Chaos nie jest jednak nieuchronny, niezbyt wielkie zaburzenia nie naruszają bowiem regularnego charakteru ruchu. Wielkim osiągnięciem dwudziestowiecznej mechaniki analitycznej jest teoria KAM, zwana tak od nazwisk jej twórców: Andrieja Kołmogorowa, Vladimira Arnolda (to jego nazwisko pojawia się w zasadzie Arnolda – sformułowanej oczywiście nie przez niego, lecz przez Michaela Berry’ego) i Jürgena Mosera.

Pokażemy, jak Lagrange wprowadził trzy stałe ruchu Keplerowskiego, które dziś nazywa się powszechnie wektorem (Laplace’a)-Rungego-Lenza. Było to w roku 1779, a dwa lata później zostało opublikowane w pracach Akademii Berlińskiej (w Oeuvres de Lagrange, t. 5, s. 127-133). Algebraiczne podejście Lagrange’a łatwo daje się uogólnić na przestrzeń n-wymiarową {\mathbb R}^n, dlatego tak je pokażemy, uwspółcześniając nieco zapis. Siła grawitacji jest odwrotnie proporcjonalna do kwadratu odległości od centrum, działa wzdłuż promienia wodzącego planety (wektor o współrzędnych x_i/r jest wektorem jednostkowym o kierunku promienia wodzącego). Przyspieszenie planety zapisane jako składowe kartezjańskie spełnia równania

\ddot{x}_i=-\dfrac{\mu x_i}{r^3},\,i=1\ldots n,

gdzie kropki oznaczają pochodne po czasie t, \mu jest iloczynem masy Słońca i stałej grawitacyjnej, a r=x_ix_i\equiv x_1^2+\ldots+x_n^2. Po powtarzających się wskaźnikach sumujemy – jest to konwencja sumacyjna Einsteina, którą uczony żartobliwie nazywał swoim największym odkryciem matematycznym (nigdy nie uważał się za matematyka, lecz za fizyka, któremu przyszło stosować nowe techniki matematyczne i który przychodził do matematyki z innej strony). Za czasów Lagrange’a i jeszcze długo później pisano po trzy równania dla współrzędnych x,y,z, co wydłużało (niepotrzebnie z naszego dzisiejszego punktu widzenia) prace. Sam zapis równań jako trzech składowych kartezjańskich nie był czymś oczywistym za życia Newtona, a więc nawet na początku XVIII wieku. Jakob Hermann uważał, iż wymaga to uzasadnienia.

Szukamy wyrażeń, kombinacji współrzędnych i prędkości, które pozostają stałe podczas ruchu (są to tzw. całki pierwsze). Znanym wyrażeniem tego rodzaju jest energia E będąca sumą energii kinetycznej i potencjalnej:

E=\dfrac{1}{2}\dot{x}_1^2-\dfrac{\mu}{r}.

Lagrange podał jeszcze inne całki ruchu Keplerowskiego (w istocie wystarczy, aby siła działająca ze strony centrum skierowana była radialnie, konkretna jej postać jest nieistotna):

L_{ij}=x_i\dot{x}_j-x_j\dot{x}_i.

Mamy tych całek tyle, ile możliwości wyboru dwóch różnych wskaźników spośród n, czyli {n\choose 2}=\frac{n(n-1}{2}. Naprawdę jest to Keplerowskie prawo pól w przebraniu, a właściwie prawo pól plus stwierdzenie, że ruch zachodzi w płaszczyźnie (to ostatnie bywa nazywane zerowym prawem Keplera, co jest o tyle słuszne historycznie, że od niego Johannes Kepler zaczął swoje badania – przyjął je jako założenie. Kopernik nie wiedział, że tory planet są płaskie!). Zawsze możemy wybrać współrzędne tak, żeby co najwyżej dwie były różne od zera podczas ruchu, np. x_1, x_2. W przypadku 3D trzy całki (L_{23},L_{31},L_{12}) zachowują się jak wektor, jest to wektor momentu pędu.

Trzecia grupa całek, odkryta przez Lagrange’a i właściwa tylko siłom grawitacji, daje się zapisać w postaci

\mu e_i=-\dfrac{\mu x_i}{r}+\dot{x}_j L_{ij},\,i=1 \ldots n.

Wartości e_i są stałe. Jest to wektor zwany powszechnie w literaturze wektorem Rungego-Lenza. Lepiej poinformowani piszą o wektorze Laplace’a-Rungego-Lenza. W istocie jest to wektor Lagrange’a, którego szczególny przypadek podał Jakob Hermann, o czym Lagrange zapewne nie wiedział. Nie interesował go zresztą fakt, że jest to wektor, ważne dla niego były trzy całki ruchu. Laplace zaczerpnął te całki z pracy Lagrange’a i spopularyzował je, umieszczając w słynnym traktacie o mechanice niebios: Traité de mécanique céleste. Laplace, który uczył się pracy naukowej, czytając Lagrange’a, nie zawsze był lojalny wobec starszego kolegi. Ten zaś był chyba zbyt dumny, aby stale jak kupiec podkreślać swoje zasługi, co czyniła większość uczonych, konkurujących między sobą o niewielką pulę płatnych posad. Całki Lagrange’a z dzieł Laplace’a czerpali później inni bądź też sami odkrywali je niezależnie, jak William Rowan Hamilton. Runge i Lenz trafili do historii przypadkiem, z lenistwa późniejszych autorów, zbyt zajętych bieżącą pracą, aby włożyć wysiłek w przypisy.

Zobaczmy jeszcze, jak z wektora Lagrange’a wynika kształt toru planety. Mnożąc obie strony ostatniego równania przez x_i i sumując po powtarzającym się wskaźniku i, otrzymujemy

r +e_i x_i=L^2, 

gdzie L^2= \frac{1}{2} L_{ij}L_{ij}.Jest to równanie stożkowej o mimośrodzie e=\sqrt{e_i e_i}.

Trzeba podkreślić, że dla Lagrange’a nie było to jakieś szczególne osiągnięcie, lecz jedynie punkt wyjścia do pracy nad bardziej skomplikowanym zagadnieniem, gdy do problemu Keplera dodamy jeszcze siłę zaburzającą, jak w rzeczywistym problemie ruchu planet przyciąganych nie tylko przez Słońce, ale także przez inne planety.

Pokażemy jeszcze powyższe wyniki w zapisie wektorowym. Mamy wówczas

{\bf \ddot{r}}=-\dfrac{\mu {\bf r}}{r^3}.

Moment pędu równa się

{\bf L = r\times\dot{r}},

a wektor Lagrange’a:

\mu {\bf e}=-\dfrac{\mu {\bf r}}{r}+{\bf \dot{r}\times L}.

Mnożąc obie strony skalarnie przez {\bf r}, otrzymamy

r+{\bf e\cdot r}=\dfrac{L^2}{\mu}.

Uwaga techniczna. Łatwo sprawdzić, że podane wielkości są całkami pierwszymi, trudniej było je oczywiście odgadnąć. Kluczem jest tutaj obliczenie pochodnej po czasie z wektora jednostkowego, co Lagrange robi pozornie bez powodu, to znaczy powód wyjaśnia się po chwili. Mamy bowiem

\dfrac{d}{dt}\left(\dfrac{x_i}{r}\right)=\dfrac{\dot{x}_i r-\dot{r} x_i}{r^2}=\dfrac{x_jL_{ji}}{r^3}.

Korzystamy z faktu, że r\dot{r}=x_i\dot{x}_i (jest to zróżniczkowane tw. Pitagorasa: r^2=\sum_i x^2_i). Postać wektorowa jest przejrzysta, lecz ograniczona do {\bf R}^3.

 

 

Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała. Opisywałem kiedyś rozwiązanie tego problemu podane w XIX wieku przez Williama Rowana Hamiltona.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=-\dfrac{r}{x}\;\Rightarrow\; a-cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Pascal i Voltaire: niemożliwy dialog (1733)

Konflikt intelektualny i etyczny miedzy wiarą chrześcijańską a nowożytną nauką i wywodzącym się z Oświecenia stosunkiem do świata jest w istocie nieusuwalny. Albo stawiamy na pierwszym miejscu Boga, a ludzie i świat wydają nam się jedynie przemijającym dodatkiem, albo wierzymy, że wszystko, o co warto walczyć, zabiegać i się troszczyć, znajduje się tutaj, na ziemi. Albo dusza nasza łaknie wieczności, albo nie wierzymy w żadną duszę ani w żadną wieczność (choć możemy rozumieć samo łaknienie).

Dwudziesty piąty List filozoficzny Voltaire’a poświęcony został polemice z Blaise’em Pascalem, wybitnym uczonym i przenikliwym acz fanatycznym myślicielem religijnym. Pozostawił on po sobie szkic wielkiego dzieła apologetycznego, które przeznaczone było dla ludzi z jego sfery: wykształconych libertynów, zdolnych jednak do refleksji nad światem i kondycją ludzką. Celem Myśli było zwrócenie uwagi na nicość wewnętrzną człowieka, jego zagubienie, samotność, niezdolność do radzenia sobie z własnymi trudnościami. Pascal sądził, że taka introspekcja musi doprowadzić do wniosku, iż jesteśmy stworzeniami upadłymi, noszącymi w sobie dziedzictwo grzechu pierworodnego. Tym, którzy to zrozumieją, proponował swój słynny zakład: sytuacja człowieka w świecie przypomina hazardzistę, który ma z jednej strony do stracenia marne, pełne cierpień i ułudy życie doczesne, a z drugiej – może wygrać wieczność, nagrodę nieskończenie cenniejszą od wszystkiego, co może go spotkać na ziemi. Sam Pascal dużo chorował i był człowiekiem wewnętrznie udręczonym, który w jakimś momencie wszystkie siły skierował ku Bogu, wyrzekając się nawet swego wielkiego talentu matematycznego.

Voltaire’owi zakład Pascala wydawał się czymś niestosownym: skoro tylko jeden człowiek na milion ma zostać zbawiony, i w dodatku nie ma on na to najmniejszego wpływu, to jak można tej rzeszy nieszczęśników stawiać przed oczami obraz raju, jaki czeka zbawionych? Takim gadaniem można tylko tworzyć ateuszy. Nie podzielał też głębokiego wzruszenia wzniosłą tajemnicą grzechu pierworodnego:

Niedole życia nie są na gruncie filozofii dowodem upadku człowieka, podobnie jak niedole konia dorożkarskiego nie dowodzą, że kiedyś konie były wielkie i tłuste, i nigdy nikt nie siekł ich batem, i dopiero odkąd jeden z nich zjadł za dużo siana, wszyscy jego potomkowie zostali skazani na ciągnięcie dorożek.

Oto jeden z Pascalowskich obrazów sytuacji człowieka:

Widząc zaślepienie i nędzę człowieka, patrząc na cały wszechświat niemy i człowieka bez światła, zdanego samemu sobie, jak gdyby zbłąkanego w tym zakątku świata bez świadomości, kto go tam rzucił ani co tam robi, co się z nim stanie po śmierci, niezdolnego do jakiej bądź wiedzy, doznaję przerażenia jak człowiek, którego by przeniesiono uśpionego na opustoszałą i straszliwą wyspę i który by się obudził bez świadomości, gdzie jest, i bez sposobu wydobycia się stamtąd. I podziwiam, w jaki sposób może ktoś nie wpaść w rozpacz w tak opłakanym położeniu.

Odpowiedź Voltaire’a jest płaska jak stół, przypomina reakcję ciągle zajętego, robiącego plany i czynnego ekstrawertyka na wyznania kogoś pogrążonego w depresji. Cóż, ludzie bywają szczęśliwsi albo mniej szczęśliwi, tak samo zresztą jak zwierzęta.

Kiedy patrzę na Paryż albo Londyn, nie widzę żadnego powodu, by popadać w rozpacz, o której mówi pan Pascal; widzę miasto, które w niczym nie przypomina wyspy bezludnej, jest pełne ludzi, bogate, strzeżone przez policję, i ludzie są tu szczęśliwi w takim stopniu, w jakim leży to w ich naturze. (…) Postrzegać wszechświat jako karcer, a ludzi jako zbrodniarzy, których czeka egzekucja, to pomysł fanatyka. Wierzyć, że świat jest miejscem rozkoszy, gdzie powinniśmy zażywać jedynie przyjemności, to mrzonka sybaryty. Wierzyć, że ziemia, ludzie i zwierzęta są takie, jakie być powinny w porządku Opatrzności, to, jak sądzę, myśl człowieka mądrego.

Pascal bodaj pierwszy zwrócił uwagę, że ludziom trudno jest żyć chwilą teraźniejszą, stwarzają więc sobie rzeczywistość wirtualną.

Niechaj każdy zbada swoje myśli, ujrzy, iż wszystkie zaprzątnięte są przeszłością i przyszłością. Nie myślimy prawie zupełnie o teraźniejszości; a jeśli myślimy, to jeno aby zaczerpnąć z niej treść do snucia przyszłości. Teraźniejszość nie jest nigdy naszym celem; przeszłość i teraźniejszość to nasze środki; jedynie przyszłość jest naszym celem. Tak więc nie żyjemy nigdy, ale spodziewamy się żyć; gotujemy się wciąż do szczęścia, a co za tym idzie, nie kosztujemy go nigdy.

Odpowiedź Voltaire’a:

Gdyby ludzie byli dość nieszczęśliwi, aby zajmować się jedynie teraźniejszością, nikt by nie siał, nie budował, nie zadrzewiał, nikt by się o nic nie troszczył…

Pascal znał wiele osób poświęcających całe życie zabawie, szukaniu kolejnych rozrywek, grom hazardowym, polowaniom, wszystkiemu, co pomaga się zapomnieć. Nie potrafł wybaczyć ludziom tej wiecznej nieumiejętności stawienia czoła samym sobie.

Skąd pochodzi, iż ten człowiek, który dopiero co stracił jedynego syna i który przygnieciony procesami i kłopotami, dziś rano był jeszcze tak stroskany, nie myśli o tym w tej chwili? Nie dziwcie się: cały jest pochłonięty myślą, którędy przejdzie jeleń, którego psy ścigają z takim zapałem od sześciu godzin. Nie trzeba więcej! Choćby człowiek najbardziej był przejęty smutkiem, jeżeli można to uzyskać, aby go wciągnąć do jakiej zabawy, na ten czas już jest szczęśliwy. A znów człowiek choćby najszczęśliwszy, jeśli go nie rozerwie i nie pochłonie jakaś namiętność lub zabawka, która zabroni przystępu nudzie, stanie się niebawem markotny i nieszczęśliwy. Bez rozrywki nie ma radości; przy rozrywce nie ma smutku.

Na to Voltaire odpowiada:

Ten człowiek wspaniale się zachowuje: odwrócenie uwagi pewniej leczy ból niż chinina gorączkę; nie wińmy o to natury, która zawsze gotowa jest nas poratować.

Albo inny punkt sporu, żywy także dziś. Pascal za horror uważał już samą myśl o samobójstwie; odbierający sobie życie skazuje się na wieczne potępienie. Voltaire widzi jednak tę sprawę z doczesnego i praktycznego punktu widzenia. Zastrzegając się, że mówi en philosophe – z filozoficznego, a więc nie religijnego punktu widzenia – stwierdza po prostu, że kiedy człowiek niezdolny jest już służyć społeczeństwu, to nie uczyni mu żadnej krzywdy, umierając. Daje przykład:

Starzec ma kamienie i cierpi nieznośne bóle; mówią mu: „umrze pan, jeśli nie pozwoli się pan pokroić; jeśli pana pokroją, to będzie pan ględzić, ślinić się i niedomagać jeszcze przez rok, będąc ciężarem dla siebie i dla innych”.

Pascal na każdym kroku doszukuje się potwierdzenia religii i w Piśmie Świętym dostrzega prawdy, do których astronomowie doszli dopiero niedawno.

Ileż gwiazd, które nie istniały dla dawniejszych flozofów, odkryły nam lunety! Zaczepiano wręcz Pismo św. co do ilości gwiazd, powiadając: „Jest ich tylko tysiąc i dwadzieścia dwie, wiemy o tym”.

Na co Voltaire sucho odparowuje:

Jest pewne, że Pismo Święte w kwestiach fizyki trzyma się pojęć potocznych; na tej zasadzie przyjmuje ono, że Ziemia jest nieruchoma, Słońce się porusza itd. Gdy mówi, że gwiazdy są niezliczone, to nie przez wyrafinowanie astronomiczne, ale by się dopasować do przyjętych pojęć. (…) Nie zostało nam ono dane, aby z nas uczynić fizyków, i wszystko na to wskazuje, że Bóg nie objawił ani Habakukowi, ani Baruchowi, ani Micheaszowi, iż pewnego dnia pewien Anglik nazwiskiem Flamsteed umieści ponad siedem tysięcy gwiazd w swoim katalogu.

W duchowym universum Pascala wielkie znaczenie miały cuda, zamykające usta mędrkom. Podaje on przy tym zadziwiający argument: fałszywym cudom nikt by nie wierzył, gdyby nie było prawdziwych. „W ten sam sposób trzeba rozumować co do religii; nie byłoby bowiem możebne, aby ludzie wyroili sobie tyle fałszywych religii, gdyby nie istniała prawdziwa”.

Voltaire ripostuje:

Zdaje mi się, że natura ludzka wcale nie potrzebuje czegoś prawdziwego, by popaść w błąd. Przypisywano tysiąc fałszywych wpływów Księżycowi, zanim jeszcze ktokolwiek pomyślał o prawdziwym związku z przypływami morza. Pierwszy chory bez trudu uwierzył pierwszemu szarlatanowi. Nikt nie widział wilkołaków ani czarowników, a wielu w nich wierzyło. Nikt nie widział transmutacji metali, a wielu zostało zrujnowanych przez wiarę w kamień filozofczny. Czyż Rzymianie, Grecy, wszyscy poganie wierzyli w fałszywe cuda, których było u nich pełno, tylko dlatego że widzieli prawdziwe?

Blaise Pascal, któremu nawet uprawianie matematyki wydało się zajęciem zbyt frywolnym, jeszcze mniej miał zrozumienia dla poezji. Ogłosił, że poezja, w odróżnieniu np. od matematyki czy medycyny, nie ma żadnego celu i stąd biorą się owe sztuczne poetyckie zwroty w rodzaju: „wiek złoty, cud naszych dni, złowróżbny laur, piękna gwiazda” – tworzą one specjalną gwarę poetycką.

Voltaire odpowiada:

Nie powinno się mówić: piękność geometryczna albo piękność medyczna, ponieważ ani twierdzenie, ani przeczyszczenie nie działają przyjemnie na zmysły, a miano piękna nadaje się tylko rzeczom, które mogą czarować zmysły, takim jak muzyka, malarstwo, wymowa, poezja, regularna architektura itd. (…) Pan Pascal musiał mieć bardzo kiepski gust, mówiąc, że złowróżbny laur, piękna gwiazda i głupstwa w tym rodzaju są pięknościami poetyckimi.

Mamy też jeszcze jedną zasadniczą różnicę postaw obu wielkich pisarzy. Według Pascala: „Jeżeli jest Bóg, trzeba kochać tylko jego, a nie doczesne stworzenia”. Odpowiedź Voltaire’a nie jest wyłącznie wyrozumowanym stanowiskiem, ale jego głębokim przeświadczeniem:

Trzeba kochać, i to bardzo czule, stworzenia. Trzeba kochać ojczyznę, żonę, ojca, swoje dzieci. Tak bardzo trzeba je kochać, że Bóg zmusza nas, byśmy je kochali nawet wbrew sobie. Wszelkie inne zasady mogą z nas tylko zrobić nieludzkich rezonerów; ile w tym prawdy, widać w postępowaniu Pascala, który źle traktował swoją siostrę i odtrącił jej pomoc ze strachu, że będzie to wyglądało, jakby kochał stworzenie: można o tym przeczytać w jego biografii. Gdyby tak się należało zachowywać, co by się stało z ludzkim społeczeństwem?

Tekst Myśli w przekładzie T. Żeleńskiego (Boya).