Johann Heinrich Lambert i Immanuel Kant: astronomia gwiazdowa po kolacji (1749, 1755)

Niegdyś młodzi uczeni zaczynali często życie zawodowe jako guwernerzy w bogatych domach. Tak było w przypadku Lamberta – syna krawca, zamieszkałego w Szwajcarii hugonockiego emigranta z Francji, i Kanta – syna siodlarza z Królewca. Obaj z czasem wyzwolili się z prostego nauczycielstwa i doszli do znacznej pozycji naukowej. Lambert został członkiem Pruskiej Akademii Nauk i wybitnym matematykiem. Kant, po wielu latach spędzonych na nauczaniu studentów, wyrósł na najważniejszego filozofa epoki, stając się nie tylko najsławniejszym profesorem w Królewcu, ale i w Niemczech, a z czasem w całej Europie.
Obaj wnieśli pewien wkład do poznania budowy Galaktyki. W tamtych czasach, pozbawionych silnych źródeł światła, wszyscy znali widok nocnego nieba. Wywierał on głębokie wrażenie na naturach skłonnych do kontemplacji. Z górą sześćdziesięcioletni Kant wciąż czerpał z tego widoku natchnienie do pracy: „Dwie rzeczy napełniają umysł coraz to nowym i rosnącym podziwem i pełnym pokory szacunkiem, im częściej i trwalej zastanawiamy się nad nimi: Gwiazdami okryte niebo nade mną i prawo moralne we mnie.” (przeł. K. Kierski). Dodawał jednak Kant w dalszym ciągu wywodu:

Atoli podziw i szacunek mogą wprawdzie pobudzić do badania, ale nie mogą zastąpić jego braku. (…) Zastanawianie się nad światem zaczęło się od najwspanialszego widoku, jaki tylko ludzkie zmysły przedstawić mogą i jaki tylko rozsądek nasz znieść może, by śledzić go w jego dalekim zakresie, a zakończyło się – astrologią. Etyka rozpoczęła od najszlachetniejszej własności ludzkiej natury, której rozwój i kultura niezmierną korzyść obiecuje, a zakończyła – fantastycznością albo zabobonem. (…) Kiedy zaś, chociaż późno, weszła w życie maksyma, aby poprzednio dobrze rozważyć wszystkie kroki, które rozum zamierza uczynić, i nie pozwolić mu postępować inaczej, jak torem przedtem dobrze obmyślanej metody, wówczas sąd o budowie świata uzyskał zupełnie inny kierunek, a z nim zarazem bez porównania pomyślniejszy wynik. Rozłożenie spadania kamienia, ruchu procy na ich pierwiastki i ujawniające się przy tym siły, tudzież matematyczne ich opracowanie, spowodowało w końcu to jasne i po wszystkie czasy niezmienne poznanie budowy świata, które przy postępującej obserwacji może spodziewać się zawsze tylko swego rozszerzenia, nigdy zaś nie potrzebuje obawiać się, że będzie musiało się cofać.

Krytyka praktycznego rozumu, z której Zakończenia pochodzą powyższe słowa, prowadzić miała do ustanowienia nauki o moralności godnej istot rozumnych. Moralność ta powinna stosować się wszędzie tam, gdzie występują takie stworzenia, Kant wierzył, że wszechświat, a nawet nasz Układ Słoneczny, pełen jest zamieszkałych planet. Wyobrażał sobie, że im dalej od Słońca, tym lotniejsze i z subtelniejszej materii zbudowane są owe istoty. Co do rasy ludzkiej nie miał wielkich złudzeń, oprócz tego jednego, że można ją nieco poprawić dzięki rozumnemu postępowaniu nauczycieli. Po dwóch wiekach możemy stwierdzić, że nawet to chyba jest niemożliwe. Nauka Kanta stosuje się jedynie do rozumnych kosmitów, jeśli gdzieś tacy istnieją.

Zostawmy więc z boku wiarę filozofa w ludzką moralność jako źródło ładu i zajmijmy się astronomią gwiazd, gdzie postęp jest niewątpliwy.

Od czasu Kopernika gwiazdy przestały jawić się jako światełka na dwuwymiarowej sferze. Przestrzeń kosmiczna zyskała trzeci wymiar. Bardzo prawdopodobne było, że odległości do gwiazd są rozmaite i otacza nas bezmiar, o jakim nie śniło się filozofom (tych, którym się to śniło, palono na wszelki wypadek na stosie). Przeżycie nowego spojrzenia na znany od dawna widok nieba było także udziałem Genezypa Kapena:

Szedł potykając się, zapatrzony w niebo, na którym odprawiało się codzienne (nie każdodzienne oczywiście) misterium gwiaździstej nocy. Astronomia taka, jaką nauczył się ją pojmować w szkole, nie przedstawiała dla niego wielkiego uroku. Horyzont i azymut, kąty i deklinacje, skomplikowane wyliczenia, precesje i nutacje nudziły go okropnie. Krótki zarys astrofizyki i kosmogonii, zagubiony w nawale innych przedmiotów, był jedyną sferą, wzbudzającą lekki niepokój, graniczący z bardzo pierwotnym wzburzeniem metafizycznym. Ale „niepokój astronomiczny”, tak bliski niekiedy wyższym stanom, wiodącym do filozoficznych rozmyślań, codzienny dzień usuwa w dzisiejszych czasach szybko, jako niepotrzebny nikomu zbytek. Idąc teraz, Genezyp miał wrażenie, że patrzy w nocne niebo po raz pierwszy w życiu. Dotąd było ono dlań, mimo wszelkich wiadomości, dwuwymiarową płaszczyzną, pokrytą mniej lub więcej świecącymi punktami. Mimo poznania teorii, uczuciowo nie wychodził nigdy poza tę prymitywną koncepcję. Teraz przestrzeń dostała nagle trzeciego wymiaru, ukazując różnice odległości i nieskończone perspektywy. Myśl rzucona z szaloną siłą okrążyła dalekie światy, starając się przeniknąć ich sens ostateczny. Wiadomości nabyte, leżące w pamięci jak bezwładna masa, zaczęły teraz wydobywać się na wierzch i grupować koło pytań postawionych w nowej formie, nie jako zagadnienia umysłu, ale jako krzyk przerażenia wszechtajemnicą, zawartą w nieskończoności czasu i przestrzeni i w tym pozornie prostym fakcie, że wszystko było właśnie takim, a nie innym.
(…)
Genezyp patrząc w gwiazdy doznawał zawrotu głowy. Góra i dół przestały istnieć — wisiał w straszliwej przepaści, amorficznej, bezjakościowej. Uświadomił sobie na chwilę aktualną nieskończoność przestrzeni: wszystko to istniało i trwało w tej właśnie sekundzie, którą przeżywał. Wieczność wydała mu się niczym wobec potworności istniejącej w nieskończonostce czasu całej nieskończonej przestrzeni i istniejących w niej światów. Jak tu pojąć tę rzecz? Coś niewyobrażalnego, co narzuca się z absolutną ontologiczną koniecznością. Ta sama tajemnica ukazała mu znowu swą twarz zamaskowaną, ale inaczej. [S.I. Witkiewicz, Nienasycenie, s. 22-23].

Dwudziestojednoletni Lambert od dzieciństwa lubił wieczorem przesiadywać przy oknie otwartym na rozgwieżdżone niebo. Widział w nim świątynię Boga, po której rozświetlonym wnętrzu może błądzić wzrokiem. Nie poprzestał na zachwycie. Zwrócił uwagę na gwiazdy widoczne na tle pasa Drogi Mlecznej. Najwyraźniej są one bliżej Słońca niż te, których światło zlewa się w naszych oczach w mglistą poświatę owego pasa. Znaczy to, że układ gwiazd jest płaskim dyskiem, wewnątrz którego się znajdujemy. Był, wedle jego własnych słów, rok 1749.

Kilka lat później, w roku 1755, Immanuel Kant, starający się o posadę na uniwersytecie, ogłosił książkę zatytułowaną ambitnie: Powszechna historia naturalna i teoria nieba i zadedykowaną królowi Fryderykowi II. Podtytuł dzieła wyjaśniał, że oparte jest ono na „prawach Newtona”. Nie wiemy, czy dziełko to dotarło do króla, niebawem drukarz zbankrutował i książka nigdy nie stała się znana. Zaczęto o niej mówić dopiero kilkadziesiąt lat później, gdy Kant zdobył sławę jako filozof i wszelkie jego pisma zaczęły zwracać uwagę.

Punktem wyjścia Kanta była myśl wyczytana w gazecie: chodziło o recenzję dzieła Thomasa Wrighta. Kant uznał, że system gwiezdny, w którym znajduje się Słońce musi być płaski i że gwiazdy poruszają się, podobnie do planet, po orbitach wokół jednego lub większej liczby centrów. Ponieważ wyczytał (u Derhama), że obserwuje się mgławice o kształcie eliptycznym, uznał, iż są to inne systemy gwiezdne widziane z ukosa: dysk wyglądać powinien wówczas jak elipsa. Słyszał też o wykryciu ruchu niektórych gwiazd: porównując dawne i nowe obserwacje astronomowie wykryli zmiany położenia kilku jasnych gwiazd.

Reszta u Kanta jest czystą spekulacją. Stara się on wykazać, że prawa mechaniki muszą prowadzić do takiego właśnie świata, jaki widzimy. W ten sposób z pierwotnego chaosu wyłonić się miał kosmos, czyli porządek. Krążenie ciał zapewnić miała druga, obok ciążenia, siła działająca we wszechświecie, a mianowicie odpychanie. Newton nie mówi wiele o siłach odpychających, choć uznawał, że działają one między cząsteczkami gazów – dzięki temu gazy rozprężają się, wypełniając całą dostępną objętość. Odpychająca siła Kanta nie jest jednak tym samym co u Newtona. Jego fizyka jest bliższa poglądom Leibniza: ruch po okręgu jest w niej stanem równowagi między siłą grawitacyjną i odśrodkową (podobnie widzą to czasem dzisiejsi studenci, co jednak nie znaczy, że studiowali Leibniza). W istocie chodzi tu nie tyle o siłę odpychającą, co o moment pędu, czyli ilość ruchu obrotowego, która musi być zachowana.

Spekulacje Kanta dość przypadkowo najbliższe były rzeczywistości i jego teoria nazwana została teorią wszechświatów wyspowych (czyli galaktyk poprzedzielanych pustą przestrzenią). Był to zbieg okoliczności: filozof z Królewca powoływał się np. na dane Williama Derhama nt. mgławic. Spośród 21 wymienionych przez niego mgławic, pięć miało być eliptycznych (naprawdę tylko jedna z nich ma kształt eliptyczny). Kant niezbyt troszczył się o fakty obserwacyjne, były one dla niego raczej punktem wyjścia do rozważań spekulatywnych.

W XVIII wieku zawodowi astronomowie nie zajmowali się ruchem gwiazd, wiedziano tylko o nieznacznych przesunięciach paru gwiazd, nie znano ich odległości, niewiele można było w tej sytuacji zrobić. Jednak Newtonowskie prawo ciążenia pozwalało na pewne wnioski. Siła przyciągająca działa między dowolnymi rodzajami materii i maleje jak odwrotność kwadratu odległości, a więc nigdy nie staje się równa zeru. Oznacza to, że niemożliwy jest wszechświat statyczny. Ciała we wszechświecie muszą się poruszać.

Dziś wiemy, że także wszechświat jako całość nie może znajdować się w spoczynku, bo byłaby to sytuacja nietrwała. Na skalę kosmiczną działa jedynie grawitacja. Inne siły, np. elektromagnetyczne, są w praktyce krótkozasięgowe (ponieważ mamy tyle samo ładunków dodatnich i ujemnych). Tym, co chroni świat od zapadnięcia się, kolapsu grawitacyjnego albo elektromagnetycznego, jest w ostatecznym rachunku nie jakiś nowy rodzaj sił, lecz inna mechanika: kwantowa. Zasada nieoznaczoności nie pozwala cząstkom zajmować dowolnie małego obszaru przestrzeni, a zakaz Pauliego sprawia, że stany kwantowe cząstek takich, jak elektrony, zajmowane są po kolei (co wyjaśnia układ okresowy pierwiastków). Możliwe są też sytuacje, kiedy grawitacja przeważa i ciało zapada się, tworząc czarna dziurę, czyli obiekt, w którym materia traci jakąkolwiek tożsamość i swoje indywidualne charakterystyki. Zostaje czysta czasoprzestrzeń ukryta za horyzontem zdarzeń. O takiej możliwości także zresztą spekulowano już w wieku XVIII.

Reklamy

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Benjamin Franklin: dwa zastosowania latawca (1752)

Jako mały chłopiec bawiłem się pewnego dnia puszczaniem latawca; znalazłszy się na brzegu stawu, który miał prawie milę długości, przywiązałem sznurek latawca do słupa i poszedłem popływać, ponieważ było bardzo gorąco. Po jakimś czasie, chcąc jednocześnie bawić się dalej latawcem i cieszyć przyjemnością pływania, wróciłem na brzeg i odwiązałem sznurek latawca wraz z kijkiem, do którego był uwiązany; wróciłem z nim do wody, gdzie stwierdziłem, iż leżąc na plecach i trzymając w rękach ów kijek, jestem [przez latawiec] ciągnięty w bardzo przyjemny sposób. Poprosiłem więc swego kolegę, by przeniósł moje ubranie dookoła stawu we wskazane przeze mnie miejsce, a sam puściłem się przez wodę z pomocą latawca, który ciągnął mnie bez żadnego wysiłku z mej strony i najprzyjemniej, jak tylko można (…) od tamtej pory nie praktykowałem owej szczególnej metody pływania, ale wyobrażam sobie, że w razie potrzeby człowiek mógłby w ten sposób przepłynąć z Dover do Calais. [List do Jacquesa Barbeu-Dubourga, marzec 1773]

Wychowywany w Bostonie, największym porcie na wybrzeżu Ameryki, Franklin od małego pływał wpław, a także umiał sterować łodzią żaglową. Gdy znalazł się w Londynie budził sensację, pokazując na Tamizie swe umiejętności w pływaniu i nurkowaniu, przez chwilę zastanawiał się nawet, czy nie zacząć zarabiać na życie jako instruktor pływacki dzieci dżentelmenów. Pływanie z pomocą latawca, a także paletek przywiązanych do rąk i nóg, należało do rozrywek tego pomysłowego i przedsiębiorczego młodzieńca, który mając siedemnaście lat uciekł z domu i od tamtej pory utrzymywał się sam z drukarstwa.

Ćwierć wieku później Franklin był już zamożnym człowiekiem, ojcem rodziny, wydawcą gazety, szanowanym obywatelem Filadelfii, gdzie zakładał różne pożyteczne organizacje, począwszy od biblioteki i straży pożarnej, a skończywszy na ochotniczej milicji do obrony Pensylwanii. Mając czterdzieści lat i więcej wolnego czasu, zajął się eksperymentami elektrycznymi. Opracował pomysłową teorię, która pierwsza wyjaśniła, co dzieje się podczas ładowania i rozładowania butelki lejdejskiej – był to najważniejszy problem końca lat czterdziestych XVIII wieku. Wpadł też na pomysł, jak sprawdzić, czy pioruny są zjawiskiem elektrycznym. Potrzebował do tego metalowego ostrza umieszczonego wysoko nad ziemią. Przymocował więc metalowe ostrze długości jednej stopy do latawca, który unosił się nad ziemią na konopnym szpagacie; na jego dolnym końcu uwiązany był żelazny klucz. Uczony trzymał dolny koniec szpagatu za pomocą jedwabnej taśmy. Chodziło o to, by szpagat sprowadził elektryczność z ostrza do klucza – włókna konopne, nawet suche, były przewodnikiem, a po zamoczeniu przewodziły jeszcze lepiej. Jedwab natomiast był standardowo używanym w eksperymentach izolatorem (pod warunkiem, że nie był mokry – eksperymentator musiał więc stać pod dachem). Według relacji Josepha Priestleya, który słyszał ją zapewne od samego odkrywcy, wyglądało to następująco. Franklin obawiając się śmieszności, nie wtajemniczył w swe zamiary nikogo oprócz syna. Był czerwiec 1752 roku. Pogoda była burzowa, ale bez uderzeń piorunów w pobliżu.

Tu widzimy ilustrację podobnego doświadczenia przeprowadzonego rok później przez Jacques’a de Romas, asesora sądu w Nérac na południu Francji

Latawiec wzniósł się w powietrze i przez dłuższy czas nie wykazywał żadnych oznak naelektryzowania. Jedna bardzo obiecująca chmura przepłynęła nad nim bez żadnego efektu; kiedy po pewnym czasie zaczynał już wątpić w swoje urządzenie, zauważył, iż niektóre luźne nitki wystające ze szpagatu najeżyły się i zaczęły się wzajemnie odpychać, tak jakby były zawieszone na zwykłym [naładowanym] przewodniku. Zachęcony tym obiecującym zachowaniem przybliżył kłykieć dłoni do klucza i oto (niech czytelnik sam osądzi, jak nadzwyczajną przyjemność musiał on poczuć w owym momencie) odkrycie się dokonało: bardzo wyraźnie poczuł iskrę elektryczną. Po niej następne, nim jeszcze szpagat zdążył nasiąknąć, rozstrzygając rzecz ponad wszelką wątpliwość; a kiedy deszcz zmoczył szpagat, zbierał już bardzo obficie ogień elektryczny.

Obawa śmieszności była zrozumiała, Franklin starał się przewidzieć, jak zachowa się przyroda w pewnej sytuacji, nie mógł mieć pewności, że jego rozumowanie było prawidłowe. „Niechaj zostanie przeprowadzony eksperyment” – napisał w swoich notatkach. Wiedział też, że jego pomysły na temat piorunów wyśmiewane są przez ekspertów. Właśnie dlatego wyniki doświadczeń okazały się taką sensacją. W tym samym czerwcu 1752 roku powszechnie czytany w Wielkiej Brytanii „Gentelman’s Magazine” opublikował list „pewnego dżentelmena z Paryża do jego przyjaciela w Tulonie”, oddający przemianę nastrojów wśród uczonych: „Z pewnością pamięta pan, jak bardzo wykpiwaliśmy pomysł pana Franklina, by opróżniać chmury z ich elektryczności i że jego samego uważaliśmy nieledwie za jakąś wyimaginowaną postać. Teraz okazuje się, iż to my byliśmy marnymi filozofami [virtuosi]; gdyż wczoraj spotkałem pewnego uczonego dżentelmena z akademii, który mnie zapewnił, że eksperyment został bardzo niedawno z powodzeniem przeprowadzony”.

Chodziło tu o nieco inne doświadczenie, którego pomysł opublikował Franklin i które zostało po raz pierwszy wykonane w maju 1752 we Francji. Ani Francuzi nie wiedzieli wtedy o latawcu, ani Franklin, w Ameryce, nie słyszał o ich udanej próbie – wiadomości przenosiły się wolno przez Atlantyk.

Dzięki tym doświadczeniom uwierzono, iż elektryczność stanowi potężną siłę przyrody, choć dotąd znano ją głównie z salonowych eksperymentów. Praktyczny Franklin zastosował wyniki do budowy piorunochronu: pierwsze takie urządzenie otrzymała Akademia w Filadelfii (szkoła założona z jego inicjatywy – sam nie mógł chodzić do szkoły jako dziecko i teraz pragnął ułatwić innym zdobycie wykształcenia) oraz na jego domu. To ostatnie urządzenie miało dwa dzwoneczki i młoteczek, który między nimi oscylował, dzwoniąc, kiedy atmosfera stawała się „elektryczna”. Żona Franklina, Deborah, denerwowała się tym dzwonieniem i kiedy Benjamin wyjechał, dopytywała się go w listach, jak można cały ten wynalazek wyłączyć.

Voltaire czyli uśmiech rozumu

Pisał Thomas Carlyle:

Niezliczone zastępy strojnych panów, bogów tego niższego świata, obróciły się w nieorganiczny pył, nie zostawiając po sobie ani jednego miłego czy użytecznego wspomnienia; a ten biedny Voltaire, który nie miał nic oprócz własnego języka i umysłu, świeci wciąż blaskiem dla wszystkich narodów, mnie zaś proszą gorąco: „Opowiedz nam o nim, oto człowiek!”.
(Th. Carlyle, History of Friedrich II of Prussia, t. 16)

Różni pustogłowi mędrcy lubią twierdzić, że Oświecenie to epoka naiwna albo nawet złowroga, która w dodatku źle się skończyła, bo Rewolucją Francuską. Zwłaszcza francuscy philosophes, a wśród nich zwłaszcza Voltaire, podkopali religię. Swoim narzekaniem na upały ściągnęli nam na głowę gradobicie. Gdyby nie oni, żylibyśmy dotąd jak u Pana Boga za piecem, nieświadomi zwątpienia, przyjmując choroby i cierpienie jako dopust boży, może głodni, ale przekonani, że kto był dobrym człowiekiem, tego nagroda w niebie nie minie, a władcom należy się cześć niemal taka jak biskupom. Ten okropny, próżny, zarozumiały, cyniczny Voltaire…

A w dodatku, jak pisał. Przeczytajmy tylko jeden krótki liścik (cała jego korespondencja zajmuje pięćdziesiąt tomów, co stanowi jedną trzecią tego, co napisał). Autor ma siedemdziesiąt pięć lat, z wyglądu przypomina szkielet, mieszka w Ferney, blisko Genewy, gdyż we Francji groziłoby mu więzienie z powodu zbyt śmiałych tekstów. Adresatką jest trzydziestotrzyletnia Suzanne Curchod, znana pod nazwiskiem mężowskim jako pani Necker, dama bogata, wpływowa i inteligentna, w której paryskim salonie bywają encyklopedyści, d’Alembert i Diderot, pisarze, artyści. Goście pani Necker wpadli na pomysł, by zebrać pieniądze na posąg Voltaire’a. Wśród subskrybentów znalazło się dwóch królów: Danii i Prus, lecz nie Ludwik XV – ten nigdy Voltaire’a nie lubił. Zadanie wyrzeźbienia posągu otrzymał Jean Baptiste Pigalle, który wybrał się w tym celu do Szwajcarii.

Do Pani Necker
Kiedy ludzie z mej wioski ujrzeli, jak Pigalle rozkłada narzędzia swojej sztuki, powiadali: „Ho, ho, będą mu robić sekcję; ależ będzie zabawa!” Gdyż, jak pani wiadomo, każde widowisko zabawia publiczność; równie dobrze można pójść do teatru marionetek, na ognie świętojańskie, do Opery Komicznej, na sumę czy na pogrzeb. Mój posąg wzbudzi uśmiech paru filozofów i sprawi, że zmarszczy brew jakiś łajdak hipokryta czy jakiś łobuz pismak; marność nad marnościami!
Lecz przecież nie wszystko jest marnością; moja tkliwa wdzięczność dla mych przyjaciół, a przede wszystkim dla ciebie, pani, nie jest marnością.
Tysiąc czułych wyrazów oddania dla pana Necker.
Ferney, 19 czerwca 1770
(przeł. Z. Żabicki)

Anegdotka z początku listu została pewnie zmyślona przez Voltaire’a. Nie chodzi jednak tylko o to, by rozbawić panią Necker. Wprowadzając prostych ludzi i ich sposób widzenia świata, autor podkreśla dystans do własnej osoby i do zniszczonego ciała, które przyszło artyście rzeźbić za pomocą całego instrumentarium. W jednym z poprzednich listów tak opisał siebie po niedawno przebytej chorobie: „Oczy mam zapadnięte na trzy cale, moje policzki przypominają stary pergamin źle przyklejony do kości, które na niczym się nie trzymają. Wypadła mi resztka zębów, które miałem. Nie rzeźbiono dotąd żadnego nieboraka w takim stanie” (przeł. K. Arustowicz). Żarty z samego siebie, owszem, ale bez natarczywego zwracania uwagi na stronę fizyczną starczego rozpadu, byłoby to niestosowne i niesmaczne. Toteż Voltaire nie epatuje zbyt długo swoim stanem, z udaną rezygnacją zgadza się dostarczać innym widowiska. Bo publiczność uwielbia wszelkiego rodzaju zbiegowiska, zgromadzenia, procesje, spektakle, obojętne czy będą wysokiego lotu, czy nie – w dobie Facebooka powinniśmy świetnie rozumieć, że liczy się widowisko i efekt nowości, mniejsza o pretekst. Pani Necker rozumie to oczywiście równie dobrze jak autor, mający za sobą pół wieku doświadczeń w pisaniu i wystawianiu sztuk teatralnych. Suma i pogrzeb także trafiają na listę spektakli: bo przecież i one są przedstawieniami, zwłaszcza w wydaniu wielkoświatowym, gdy liczy się decorum, podniosłość, manifestowanie hierarchii społecznej znacznie bardziej niż treść duchowa owych zgromadzeń. Voltaire, wychowanek jezuitów, nigdy nie rozumiał przeżyć religijnych, uważał je za szalbierstwo albo przesąd kucharek i lokajów (potrzebny zresztą do utrzymania porządku w państwie). Wynikiem zabiegów Pigalle’a miał być posąg, niemający zbyt wiele wspólnego z rzeczywistym wyglądem modela. Przedstawiał on raczej pewien byt idealny, Voltaire’a na Polach Elizejskich (nie tych paryskich, lecz tych antycznych), gdzie znajdzie się wśród innych sławnych postaci.

jeanbaptistepigalle_voltairenude

Bo ostatecznie, jakie to ma znaczenie dla potomności, czy jakiś blok marmuru przypomina tego, a nie innego człowieka”.

Spektakle próżności to oczywiście marność nad marnościami, ale dalecy jesteśmy od tonu Księgi Koheleta: nie wszystko jest marnością. Na przykład przyjaźń. Delikatna, nie narzucająca się, pełna empatii przyjaźń jest jednym z najcenniejszych uczuć tej epoki, która niezbyt wiele sobie robiła z miłości, nie potrafiąc jej traktować z mieszczańską solennością ani z młodzieńczym ponuractwem romantyzmu. Voltaire, zjadliwy i szyderczy wobec wrogów, umiał być niezwykle wyrozumiały wobec tych, którzy mienili się jego przyjaciółmi. Nawet wtedy, gdy pielęgnował tylko złudzenie, nawet wtedy, gdy go to sporo kosztowało, a rzekomy przyjaciel był raczej pieczeniarzem albo obłudnikiem.

Styl Voltaire’a, jego zwięzłość, lekkość, starannie przemyślana prostota to jeden ze szczytów literatury francuskiej i światowej. Po poprzednikach otrzymał język zdolny do wyrażania wielu treści: język Molière’a, Racine’a, Pascala. Potrafił go udoskonalić na tysiącach przykładów, wydestylować co najlepsze z żartobliwego dialogu salonowego, w którym największą zbrodnią jest nudzić. Jego klarowna proza nie utrudniała dotarcia do myśli, przeciwnie, to autor brał na siebie lwią część trudu, nie każąc czytelnikowi przedzierać się przez zawiłe okresy zdaniowe. W dziedzinie stylu najwięcej chyba zawdzięczał Pascalowi, którego poglądy leżały na antypodach jego własnych. Voltaire nie potrafił zrozumieć ponurej zaświatowości tego wybitnego umysłu, opętanego jedną tylko kwestią: własnego zbawienia. Pascal starał się uratować katolicyzm przed życiem ułatwionym i algebraiczną moralnością jezuitów, w której złe i dobre uczynki sumowały się w jednym bilansie i nietrudno było wyjść na swoje. Jego kościół wybrał jednak barokową teatralność, gwałtowne gesty świętych rażonych nagłym widzeniem, cuda ułatwione i dostępne zmysłom. Wybrał jezuitów przeciwko jansenistom. Voltaire nie rozumiał ani jednych, ani drugich, choć po kasacie zakonu przygarnął pewnego jezuitę, z którym grał w szachy.

Wystan Hugh Auden

Voltaire w Ferney 

Teraz prawie szczęśliwy, oglądał gospodarstwo.
Tu zegarmistrz-emigrant w oknie go przywitał
I powrócił do pracy. Gdzie szybko rósł szpital,
Cieśla uchylił czapki. Ogrodnik meldował,
Że dobrze idą drzewa, które sam plantował.
Białe Alpy błyszczały. Był wielki. Było lato.

Tam daleko w Paryżu, gdzie jego przeciwnicy
Syczeli, że jest podły, w sztywnym swoim krześle
Stara, ślepa, czekała na śmierć i na listy. Do niej
„Nic lepszego nad życie” pisał. Gdyż jest bojem.
To coś warte. Oprawców, kłamców straszył nieźle.
Pleć chwast. Cywilizować. I tylko to się liczy.

Słodki, cięty, intrygant, prześcignął wszystkich dawno.
Inne dzieci rozważnie wiódł na święte wojny
Przeciw obrzydłym dorosłym. A chytrość miał dziecka.
Wiedział kiedy udawać, że jest już pokorny,
Chronić się w dwulicowość, łgać dla bezpieczeństwa,
Ale jak chłop cierpliwie trwał wiedząc, że upadną.

Nigdy, jak d’Alembert, nie zwątpił o wygranej.
Tylko Pascal był wielkim wrogiem. Ten czy ów
To szczury już otrute. Choć zostało wiele
Do zrobienia, a nie miał nikogo prócz siebie.
Poczciwy Diderot był głupi, starał się jak mógł.
Rousseau, wiedział to zawsze, wykpi się swoim łkaniem.

Więc, jak na warcie, nie spał. Noc była pełna ech:
Krzywdy, trzęsienia ziemi, egzekucje. Umrze,
A straszne niańki ciągle stoją nad Europą
Chcąc dzieci oblać wrzątkiem. Chyba tylko słowo
Wiersza mogło je wstrzymać; musiał pisać. W górze
Nie skarżące się gwiazdy składały jasny śpiew.
(przeł. Cz. Miłosz)

Stara, ślepa korespondentka to markiza du Deffand, kobieta tyleż przenikliwa, co złośliwa, choć nie wobec wszystkich.

D.A. Henderson, synek Franklina i racjonalność decyzji o szczepieniu

W tych dniach zmarł D.A. Henderson, epidemiolog, który walnie przyczynił się do zlikwidowania ospy na świecie. Był to wynik wieloletniej planowej pracy zespołu ludzi, którymi kierował najpierw w amerykańskiej CDC, a później w WHO. Fachowcy mówią, że to największy wymierny sukces w historii medycyny. Dramatem naszego świata jest fakt, że ludzie tacy jak on są niezbyt znani w przeciwieństwie do różnej maści celebrytów, skandalistów i kokainistów płci obojga.  OB-Henderson__13981471621450

Pisałem o epidemii w roku 1721 w Bostonie i tragicznym losie małego synka Benjamina Franklina. Stosując rachunek prawdopodobieństwa, nietrudno uzasadnić racjonalność decyzji o szczepieniu nawet przy niepełnych danych z XVIII wieku. Musimy pamiętać, że ówczesne szczepienie, tzw. inokulacja albo wariolizacja, różniły się od późniejszej metody. Zaszczepiano bowiem ludziom ospę ludzką, co w niektórych przypadkach kończyło się śmiercią. Dopiero pod koniec stulecia Edward Jenner odkrył, że bezpieczniejsze jest zaszczepianie ludziom ospy krowiej.

Zazwyczaj w podręcznikach matematyki mamy do czynienia z urnami, z których wyciąga się kule i w zależności od tego, co wyciągniemy, pojawiają się różne możliwości i budujemy drzewo rozmaitych ewentualności. Szczepienia są przykładem lepiej chyba przemawiającym do wyobraźni niż losowania białych i czarnych kul z urny.

Oto dane dla epidemii w Bostonie w roku 1721.

  • Liczba ludności miasta: 10 700
  • Poddanych inokulacji 281, z czego 6 zmarło
  • Spośród niepoddanych inokulacji 4917 zachorowało i przeżyło, 842 osoby zachorowały i zmarły, a 4654 osoby w ogóle nie zachorowały

Będziemy prawdopodobieństwa przybliżać częstościami, zazwyczaj nie mamy na to lepszego sposobu, należy pamiętać, że dane pochodzące z niewielkiej próby mogą się okazać niedokładne i dysponując większą statystyką, otrzymalibyśmy nieco inne wyniki. Mamy więc prawdopodobieństwo zgonu po inokulacji równe 6/281=0,021 i przeżycia inokulacji 1-0,021=0,979.

Prawdopodobieństwo zgonu wśród niepoddanych inokulacji oraz zarażonych jest równe 842/(842+4917)=0,146, a prawdopodobieństwo przeżycia w tej samej grupie równa się 1-0,146=0,854.

Prawdopodobieństwo zarażenia osoby niepoddanej inokulacji możemy próbować oszacować na podstawie naszych danych jako (4917+842)/(4654+4917+842)=0,553. Jest to szacowanie z dołu: musimy pamiętać, że część spośród 4654 osób, które nie zachorowały, przeszła już kiedyś ospę i była uodporniona na resztę życia. Jeśli prawdopodobieństwo zarażenia osoby, która nie przeszła ospy, oznaczymy przez x, mamy następujące drzewo możliwości.

qc23465.f1

Rysunek z pracy M Best, A Katamba, and D Neuhauser, Making the right decision: Benjamin Franklin’s son dies of smallpox in 1736.

Jeśli przyjmiemy x=0,553, to prawdopodobieństwo przeżycia bez inokulacji będzie równe (1-x)+x \cdot 0,854=0,919. Jak widać, wartość ta jest mniejsza od prawdopodobieństwa przeżycia inokulacji, zatem statystycznie biorąc, zabieg ten zwiększa szanse przeżycia. Gdybyśmy mieli więcej informacji, wartość x mogłaby się okazać jeszcze większa, a to by oznaczało, że prawdopodobieństwo przeżycia bez inokulacji jest jeszcze mniejsze (można zapisać to prawdopodobieństwo jako 1-x+0,854x=1-0,146x, jest to więc malejąca funkcja zmiennej x).

Można też się zastanowić, jaka musi być najmniejsza wartość x, żeby inokulacja była racjonalnym zabiegiem. Granicą racjonalności będą równe prawdopodobieństwa zgonu: x\cdot 0,146=0,021, skąd x> 0,144. Ponieważ dane wskazują, że prawie na pewno ostatni warunek jest spełniony, inokulacja jest racjonalnym zabiegiem.

Nie mamy, niestety, danych dla epidemii w 1736 roku w Filadelfii, gdzie mieszkał Benjamin Franklin z rodziną. Mamy jednak dane dla późniejszej epidemii w Bostonie w roku 1752.

  • Boston liczył wówczas 15 684 mieszkańców
  • 5998 osób przeszło już ospę i nie musiało się jej obawiać
  • 2124 osoby poddały się inokulacji (znacznie więcej niż w roku 1721), 30 z nich zmarło
  • 1843 osoby uciekły na wieś, by przeczekać epidemię, nie wiemy, jak wiele spośród nich zmarło.
  • 5719 osób nie poddało się inokulacji ani nie uciekło; 97% spośród nich zachorowało, a 539 zmarło

Prawdopodobieństwo zgonu po inokulacji równe jest 30/2124=0,014; prawdopodobieństwo przeżycia: 0,986. Wartości zbliżone są do tego, co otrzymaliśmy wyżej dla roku 1721.

Wśród niezaszczepionych i narażonych na zachorowanie śmiertelność była równa 539/(0,97\cdot 5719)=0,097, prawdopodobieństwo przeżycia choroby równało się 1-0,097=0,903. Oznaczało to, że nie robiąc nic, ma się prawdopodobieństwo przeżycia 0,03+0,97\cdot 0,903=0,906. Należy porównywać to z wartością 0,986 dla zaszczepionych. Inokulacja była więc znacznie lepszą decyzją.

Statystyka z roku 1752 obejmuje jeszcze możliwość ucieczki z miasta. Była to najprostsza metoda unikania chorób epidemicznych i kogo było na nią stać, ten ją stosował. Nie znamy prawdopodobieństwa zachorowania wśród tych, co uciekli. Oznaczmy je przez y. Mamy więc następujące drzewo możliwości.

qc23465.f2

(Rysunek z pracy jw.)

Można zadać pytanie, jakie powinno być y, aby ucieczka była lepszym wyjściem niż pozostanie w Bostonie i poddanie się inokulacji. Prawdopodobieństwo zgonu osoby uciekającej to 0,097y, należy je porównać z prawdopodobieństwem zgonu po inokulacji, równym 0,014. A zatem, jeśli y< 0,144, to ucieczka jest racjonalna. Trudno jest oczywiście oszacować wartość y, zależy ona np. od tego, czy uciekniemy, zanim jeszcze epidemia się rozwinie, czy w jej późniejszej fazie (choroba ma pewien okres inkubacji, możemy więc wyjeżdżając czuć się dobrze mimo zarażenia). W dodatku uciekając, nadal nie mamy odporności na ospę, a w Bostonie w ciągu osiemnastego wieku większe epidemie wystąpiły w latach 1721, 1730, 1752, 1764, 1776, 1778 oraz 1792. Można się było spodziewać, że za kilkanaście lat choroba znów się pojawi.

Flaszki Kleista i butelki lejdejskie: elektryczny szok uczonej Europy (1745-1746)

Ważne odkrycia niemal zawsze są niespodziewane, bywają także niebezpieczne, gdyż odkrywcy zwykle są w roli ucznia czarnoksiężnika, rozpętując moce, nad którymi nie potrafią zapanować. Odkrycie butelki lejdejskiej stanowiło przełom w badaniach elektryczności. Do tej pory była ona jedynie źródłem interesujących i zabawnych pokazów. Elektron znaczy po grecku bursztyn, i to bursztyn był pierwszą substancją używaną do wywołania zjawisk przyciągania i odpychania lekkich drobnych przedmiotów w rodzaju skrawków papieru. Zauważono, że także inne materiały, jak siarka albo szkło, elektryzują się przez tarcie. Znane było doświadczenie Graya, pokazujące, że elektryczność może być przekazywana także przez ciało ludzkie.

0154.P.2.1612.1032

Stephen Gray, farbiarz, astronom i okazjonalnie demonstrator eksperymentów w Towarzystwie Królewskim, został pod koniec życia pensjonariuszem Charterhouse, czegoś w rodzaju szpitala z domem starców dla gentlemanów (pojęcie w Anglii bardzo rozciągliwe) połączonego z sierocińcem i szkołą. Do eksperymentów używał czterdziestosiedmiofuntowego chłopca zawieszonego na jedwabnych izolujących pasach. Na rysunku widzimy jeden z wariantów takiego doświadczenia. Osoba B obraca tu za pomocą przekładni szklaną kulę C, która jest pocierana ręką osoby D. Zawieszony w powietrzu chłopiec stopami dotyka kuli, podając rękę dziewczynce G (stojącej na izolacyjnej podkładce z żywicy albo smoły). Jej ręka przyciąga skrawki złotej folii leżące na gerydonie H. Na drugim rysunku mamy naelektryzowaną szklaną rurkę TT, która za pomocą brązowego drutu B połączona jest z dzwonkiem A. Młoteczek C zawieszony jest na jedwabnym sznurze i jest na przemian przyciągany oraz odpychany przez A, w rezultacie oscyluje między dzwonkami A i E, wywołując ich dzwonienie.

Georg Matthias Bose, profesor filozofii naturalnej z Wittenbergi i autor marnych francuskich wierszy, w swych eksperymentach przejawiał iście germańskie poczucie humoru. Jeden z nich, znany jako Venus electrificata, polegał na tym, by naelektryzować damę stojącą na izolowanej podkładce. Gdy następnie jakiś kawaler próbował ją pocałować, rażony był iskrą wybiegającą z warg wybranki. Innym jego popisowym doświadczeniem była „beatyfikacja”: delikwent wkładał na głowę specjalną koronę, która po naelektryzowaniu świeciła. Mimo tak bezceremonialnego podejścia do aureoli i świętości starał się Bose o uznanie wszędzie, nawet w Turcji i u Ojca Świętego Benedykta XIV. To ostatnie ściągnęło na niego represje na macierzystej uczelni, kolebce luteranizmu, spór musiał zażegnywać król Fryderyk.

bub_gb_FSJWAAAAcAAJ-xx

Jesienią 1745 roku eksperymentami elektrycznymi zajął się dziekan luterańskiej kapituły katedralnej w Kamieniu Pomorskim, Ewald Georg von Kleist. Dwadzieścia lat wcześniej studiował on w Lipsku i w Lejdzie i mógł się już wtedy zetknąć z elektrycznością, choć bezpośredniej inspiracji dostarczyły mu stosunkowo niedawne eksperymenty Bosego, m.in. uzyskiwanie iskry z wody oraz zapalanie spirytusu za pomocą elektryczności. Wyobrażano sobie wówczas elektryczność jako jakiś pewien rodzaj rodzaj subtelnej materii jakoś spowinowaconej z ogniem, mówiono nawet o ogniu elektrycznym. Eksperymenty z czerpaniem ognia z wody bądź zamianą iskry elektrycznej na rzeczywisty płomień zdawały się potwierdzać bliski związek obu tych tajemniczych substancji. Kleist pragnął naelektryzować wodę i udało mu się to w następujący sposób: butelkę napełniał częściowo wodą, rtęcią albo spirytusem, następnie zatykał korkiem, przez który przechodził drut albo gwóźdź. Jeśli trzymało się ten wynalazek w ręku, podczas gdy gwóźdź podłączony był do machiny elektrostatycznej, można było go bardzo mocno naelektryzować. Kolba średnicy czterech cali po naelektryzowaniu potrafiła powalić chłopca w wieku ośmiu bądź dziewięciu lat, jak starannie odnotował dobry dziekan (nie podając wszakże wagi chłopca). Po raz pierwszy wytworzona przez człowieka elektryczność przestała być niewinną salonową zabawą. Jak pisał Kleist, każdemu odechciałoby się całowania tak naelektryzowanej Wenus.

flasche-xx

Rysunek von Kleista z listu do Pawła Świetlickiego, diakona luterańskiego kościoła św. Jana w Gdańsku, przedstawiający jego urządzenie (z listu tego korzystał D. Gralath)

Odkrycie von Kleista było przypadkowe: nie rozumiał on, dlaczego musi trzymać swoje urządzenie w ręku, aby działało. Chcąc nagromadzić dużą ilość elektrycznego ognia, należałoby raczej izolować naczynie zamiast trzymać je w ręku i w ten sposób uziemiać. Dziś wiemy, że flaszka Kleista, jak nazywano ją czasem w Niemczech, była po prostu kondensatorem: ręka i woda z gwoździem stanowiły jego dwie okładki rozdzielone szkłem. Z punktu widzenia ówczesnej wiedzy działanie tego urządzenia było jednak niezrozumiałe. Spośród kilku uczonych, którzy otrzymali listowne doniesienia Kleista, eksperyment zdołał powtórzyć chyba tylko Daniel Gralath (a właściwie jego pomocnik Gottfried Reyger) w Gdańsku. Niedługo później, już w roku 1746, podobne doświadczenie przeprowadzono niezależnie w Lejdzie. Także i tu pierwszym odkrywcą był naukowy amator, Andreas Cunaeus, prawnik, zabawiający się eksperymentami w pracowni miejscowego profesora Pietera van Musshenbroeka. Przypadkowo zauważył on to samo co Kleist, jego eksperyment powtórzył później pomocnik profesora, Jean Nicolas Allamand, a na koniec i sam Musshenbroek, który był nim tak mocno wstrząśnięty, że, jak wyznał swemu paryskiemu koledze, nawet za całe królestwo Francji nie chciałby tego przeżyć po raz drugi.

leiden exp-x

Strach niebawem minął i elektrowstrząsy za pomocą butelek lejdejskich zaczęli wytwarzać wszyscy eksperymentatorzy, choć przez pewien czas do dobrego tonu należało informować o przypadkach konwulsji, paraliżu, zawrotów głowy itp. Żona profesora z Lipska, Johanna Heinricha Wincklera, po dwóch wyładowaniach poczuła się tak słabo, że ledwie mogła mówić. Tydzień później mąż zaaplikował jej jeszcze jedno wyładowanie, po którym krew się jej puściła z nosa. Profesor Winckler humanitarnie wstrzymał się jednak od przeprowadzania eksperymentów na ptakach, nie chcąc zadawać owym stworzeniom niepotrzebnych cierpień. Abbé Jean Antoine Nollet, mistrz pokazów fizycznych, utrzymujący się z produkcji naukowych urządzeń dla bogatych klientów, takich jak np. Voltaire i pani du Châtelet, zaprezentował w obecności króla Ludwika XV żywy łańcuch 180 grenadierów, poprzez który rozładowywała się butelka lejdejska. Wszyscy oni jednocześnie podskakiwali, co tak bardzo podobało się suwerenowi, że kazał sobie ten eksperyment powtarzać.

Zabdiel Boylston, czarna ospa w Bostonie i siła charakteru (1721-1722)

W XX wieku czarna ospa zabiła 300 mln. ludzi – trzy razy więcej niż zginęło w obu wojnach światowych. I w tym samym XX wieku udało się tę chorobę wyeliminować. Można, oczywiście, buntować się przeciwko nowoczesnej cywilizacji, ale żadna z tych 300 mln. osób nie zrozumiałaby, o co nam właściwie chodzi. Nie ma jednak szczepionki przeciwko głupocie i w naszych światłych czasach dzieci chorują albo będą chorować na rozmaite groźne przypadłości jedynie dlatego, że ich rodzice albo rodzice ich kolegów są podejrzliwymi idiotami, którzy sądzą, że wiedzą lepiej niż eksperci.

W XVIII wieku nie znano przyczyn ani mechanizmu szerzenia się ospy, jasne było tylko, że jest to choroba zakaźna. Ponieważ objawy występują dopiero po 12 dniach, więc izolacja chorych była na ogół spóźniona i zdążyli oni już zarazić osoby, z którymi się stykali. Wiadomo też było z obserwacji, że ci, którzy przeszli chorobę i przeżyli, byli na nią później odporni. Ryzyko było tak duże, że w Anglii w XVII wieku był zwyczaj, by nie zapisywać majątku dzieciom, zanim nie przeszły ospy, ponieważ ich przyszłość była wciąż bardzo niepewna. Spośród tych, co przeżyli, wielu było oślepionych albo oszpeconych na całe życie. Jedną z takich osób, których urodę zniszczyła ospa, była Mary Wortley Montagu, arystokratka, pisarka (sama nauczyła się łaciny w ojcowskiej bibliotece) i żona ambasadora brytyjskiego w Konstantynopolu. Dowiedziała się ona o praktyce wariolizacji stosowanej w imperium osmańskim: pobierano płyn z pęcherzyków na skórze chorego i zaszczepiano go osobom zdrowym. Pacjenci chorowali wówczas na ogół w sposób łagodny, nabywając przy tym odporności. Nie zawsze wariolizacja przynosiła pożądane efekty, zdarzały się przy jej stosowaniu wypadki śmiertelne. Montagu propagowała tę metodę w Londynie, przekonując m.in. księżnę Walii Karolinę do zaszczepienia dzieci. Metoda była kontrowersyjna. Wyglądała na jakiś rodzaj zabobonu, w dodatku przychodziła do Europy z krajów niecieszących się zaufaniem w sprawach medycznych i naukowych: stosowano ją na Kaukazie, w Afryce. W Konstantynopolu szczepieniami zajmowały się zwykle stare kobiety, co też nie wyglądało wiarygodnie w oczach Zachodu. Z punktu widzenia dzisiejszej wiedzy wariolizacja stanowiła postęp, lecz była obarczona ryzykiem. Dopiero pod koniec XVIII wieku Edward Jenner wynalazł skuteczną odmianę tej metody szczepienia: należy zaszczepiać ospę krowią, pacjenci wówczas nie chorują i nabierają odporności na ospę ludzką. Także i wtedy nie rozumiano, dlaczego szczepienie jest skuteczne i jak działa, opierano się wyłącznie na obserwacjach.

W kwietniu 1721 roku do Bostonu, stolicy Massachusetts, zawinął okręt „Seahorse”, płynący z Barbadosu. Jeden z członków załogi zachorował na ospę i został odizolowany w domu z czerwoną ostrzegawczą flagą. Później zachorowali także inni marynarze z tej jednostki i stało się jasne, że kwarantanna nie wystarczy, ponieważ choroba zdążyła się już rozprzestrzenić. Ówczesny Boston był małym miastem, liczącym sobie około jedenastu tysięcy mieszkańców. Rządy duchowe sprawowała w nim dynastia purytańskich ministrów: wiekowy Increase Mather i jego dobiegający sześćdziesiątki syn, Cotton Mather. Obaj zapisali się poprzednio w annałach ścigania czarownic i czarowników: to za ich aprobatą toczyła się sprawa w Salem w roku 1692. Wszechstronnie wykształcony w Ameryce i w Anglii, Cotton Mather, członek Towarzystwa Królewskiego, był zarazem ciasnym bigotem, głęboko wierzącym w realność i szkodliwość czarów. W swym dziele Pamiętne zrządzenia opatrzności opisywał przypadek irlandzkiej praczki, niejakiej Glover, która jako czarownica nękała pobożną rodzinę Goodwinów, którzy podczas owych diabelskich ataków głuchli, niemieli, ślepli albo wszystko to na raz. Mather przyczynił się do prześladowań w Salem, choć zarazem podkreślał potrzebę niezbitych dowodów w każdym przypadku. Teraz, wobec zagrożenia ospą, także starał się interweniować i tym razem jego wpływ okazał się jednoznacznie korzystny. Mather przekonany był bowiem do wariolizacji: czytał o niej wcześniej w „Transactions of the Royal Society”, miał też w domu niewolnika z Afryki, który mu opowiadał o tej metodzie. Minister skierował do lekarzy bostońskich pismo przedstawiające zalety wariolizacji. Medycy zareagowali wrogo, obawiając się, że wskutek wariolizacji epidemia jeszcze bardziej się rozszerzy. Wrogo też reagowali niektórzy duchowni. Ich zdaniem człowiek nie powinien ingerować w naznaczony przez Boga bieg wypadków. Znaleziono nawet pierwowzór wariolizacji w Księdze Hioba: „Odszedł szatan sprzed oblicza Pańskiego i obsypał Hioba trądem złośliwym, od palca stopy aż do wierzchu głowy. [Hiob] wziął więc skorupę, by się nią drapać siedząc na gnoju” (Hi 2, 7-8). A więc także Pismo św. wskazywało więc wyraźnie, że nie należy nikogo szczepić. Pismo św, jak zawsze, wskazuje we wszystkich kierunkach jednocześnie.

Jedynie chirurg Zabdiel Boylston gotów był spróbować wariolizacji. Nie miał on wykształcenia akademickiego, uczył się medycyny od swego ojca i innego jeszcze lekarza, w Ameryce nie było zresztą żadnej szkoły medycznej. Boylston dał się poznać jako sprawny chirurg, który nie obawiał się przeprowadzać ryzykownych operacji, jak usuwanie kamieni żółciowych czy pierwsza mastektomia w Ameryce. Operacje przeprowadzało się bez znieczulenia, należało wszystko robić błyskawicznie, żeby pacjent nie zmarł wskutek szoku i upływu krwi. Później groziły mu oczywiście wszelkie infekcje, Boylston był ponoć pedantycznie czysty i zapewne pomagało to jego pacjentom (nikt wówczas nie kojarzył chirurgii z czystością). Pierwsze szczepienia ospy przeprowadził na własnym synu oraz parze swych niewolników: ojcu i synu. Wszyscy trzej przeżyli. Boylston zaczął więc stosować tę metodę, choć przyjmowano to wrogo i lekarz obawiał się o swe bezpieczeństwo. W pewnym momencie rada miejska oficjalnie zakazała mu tych praktyk. Nie ujął się też za nim Mather, nie do końca chyba przekonany do wariolizacji (nie zaszczepił np. własnego syna). Ostatecznie Boylston przeprowadzał szczepienia na niezbyt dużą skalę, tylko u pacjentów, którzy sami się z tym do niego zwracali. Był także ostro krytykowany w miejscowej prasie. W tygodniowej gazecie wydawanej przez Jamesa Franklina (terminował u niego wtedy młodszy brat, Benjamin, który z czasem miał zostać najsławniejszym uczonym Ameryki) szczepienia atakowano jako szkodliwy przesąd. W pewnym stopniu postawa gazety wynikała z jej opozycyjności: James Franklin był przeciwny rządom Mathera i atmosferze moralnego terroru wprowadzanej przez purytanów, nietrudno więc było go przekonać, że duchowny także i tym razem broni jakichś przesądów. Ostatecznie w ciągu niecałego roku zachorowało w Bostonie około 6000 osób – ponad połowa ludności (około tysiąca bogatszych wyjechało na wieś i tam przeczekali epidemię). Zmarły w tym czasie na ospę 844 osoby, czyli 14% zainfekowanych. Za Boylstonem przemawiały liczby: spośród 286 osób, jakie zaszczepił, zmarło jedynie sześć. W dodatku nie zawsze było jasne, czy osoby te były zdrowe w momencie wariolizacji, być może choroba już się u nich rozwijała, lecz nie dawała jeszcze widocznych objawów. Tak czy inaczej było to tylko 2,4% – statystycznie biorąc, wariolizacja działała.

smallpox account-x

Doświadczenia swe Boylston opisał w książce, przyjęto go też do Towarzystwa Królewskiego. Wariolizację zaczęto, choć z oporami, uznawać. Nabrał do niej przekonania także Benjamin Franklin, choć obawiał się związanego z nią ryzyka. Pisze w swej autobiografii:

W roku 1736 straciłem jednego z mych synów, pięknego czteroletniego chłopca. Umarł na ospę, którą się w zwykły sposób zaraził. Długo i gorzko żałowałem potem i nadal żałuję, że nie kazałem go szczepić. Wspominam o tym ku przestrodze rodziców, którzy nie szczepią swych dzieci z obawy, że mogłyby wskutek tego umrzeć, czego nigdy nie mogliby sobie wybaczyć. Mój przykład świadczy, że żałować trzeba nieraz i w przeciwnym wypadku, a wobec tego lepiej wybierać drogę bezpieczniejszą. (przeł. J. Stawiński)