Einstein w Aarau: czyli co mówią równania Maxwella? (1896)

Aarau

Do szkoły w Aarau trafił Einstein po oblanych egzaminach na Politechnikę w Zurychu. Szesnastolatek zdawał tam jako młodzieniec nad wiek rozwinięty, lecz bez matury. Politechnika dopuszczała takich kandydatów, ponieważ sito stanowiły egzaminy wstępne z wielu przedmiotów. Einstein okazał się zbyt słaby z przedmiotów innych niż fizyka i matematyka, toteż poradzono mu, aby zdał jednak maturę.
Szkoła w Aarau, dobrze wyposażona i liberalna, wolna od wojskowego drylu, który tak obrzydł Albertowi w Monachium, zostawiła mu miłe wspomnienia na resztę życia. Uczył się tam niemieckiego, francuskiego, włoskiego, historii, geografii, matematyki, chemii, rysunku technicznego i artystycznego, śpiewu i gry na skrzypcach. Otrzymywał dobre albo bardzo dobre oceny niemal ze wszystkich przedmiotów, słabo wypadał tylko z francuskiego. Zasłużył nawet na pochwałę inspektora na egzaminie z muzyki: „Jeden z uczniów, o nazwisku Einstein, wyróżnił się wykonaniem z głębokim zrozumieniem adagia z jednej z sonat Beethovena”.

Szkolny kolega, Hans Byland, opisywał Alberta z owego okresu jako „zuchwałego Szwaba”: „Pewny siebie, z kapeluszem zsuniętym zawadiacko na tył głowy okrytej grubymi czarnymi włosami. Przechadzał się w tę i z powrotem szybkimi krokami. W ogóle poruszał się w jakimś szalonym tempie, właściwym niespokojnym duchom, które noszą w sobie cały świat. Nic nie mogło umknąć przenikliwemu spojrzeniu jego dużych brązowych oczu. Każdy, kto go poznał, był pod wrażeniem jego dominującej osobowości. Kpiący uśmieszek jego pełnych warg, z których dolna była wyraźnie wysunięta, nie zachęcał filistrów do prób fraternizacji z tym młodzieńcem”.

Górny rząd od lewej: Adolf Lüthy (1878), Hans Frösch (1877), Karl Walter (1876),  Ernst  Hunziker (1876), Eduard Haury (1877), Emil Ott (1877). Dolny rząd od lewej: , Albert Einstein (1879), Cäsar Hofer (1878), Oskar Schmidt (1876), Guido Müller (1877)

Atmosfera Aarau służyła Einsteinowi. Mógł swobodnie myśleć, a to było dla niego zawsze najważniejsze. Toteż nic dziwnego, że właśnie tam zaczął się zastanawiać nad problemami, które miały go z czasem doprowadzić do teorii względności. „Podczas tego roku w Aarau przyszło mi do głowy następujące pytanie: gdyby poruszać się razem z falą świetlną z prędkością światła, to widziałoby się pofalowane pole niezależne od czasu. Wydaje się jednak, że coś takiego nie istnieje! To był pierwszy, młodzieńczy eksperyment myślowy mający związek z teorią względności. Pomysł nie jest wytworem logicznego myślenia, nawet jeśli produkt końcowy związany jest z jakąś strukturą logiczną”.
Idea poruszania się razem z falą świetlną, a nawet szybciej od niej, pojawiała się wcześniej u różnych pisarzy popularnonaukowych, takich jak Camille Flammarion albo Felix Eberty. W powieści Flammariona jej bohater, Lumen, potrafił po śmierci, jako dusza, wyprzedzić światło i obserwować rozmaite wydarzenia z przeszłości: siebie na pierwszej randce albo w wieku sześciu lat, a nawet „władcze i zamyślone czoło” Napoleona podczas rewii wojsk na Placu Marsowym. Gdy uważamy światło za falę w pewnym ośrodku – tak jak dźwięk – nic nie stoi na przeszkodzie wyobrażaniu sobie, że podróżujemy razem z falą. Wiadomo jednak z fizyki, że nie ma takich fal elektromagnetycznych, które zmieniałyby się w przestrzeni, a były niezmienne w czasie, i Albert Einstein czuł to wówczas intuicyjnie. Później, już w trakcie studiów, musiał zdać sobie sprawę, że takie „zamrożone” fale nie mogą być rozwiązaniami równań Maxwella, to znaczy sprzeczne są z naszą wiedzą o przyrodzie.

Co mówią równania Maxwella?

W każdym punkcie przestrzeni możemy określić dwa wektory: jeden opisujący pole elektryczne \vec{E}, drugi – pole magnetyczne \vec{B}. Aby je zmierzyć, należałoby zaobserwować, jakie siły działają w tym punkcie przestrzeni na umieszczony tu ładunek elektryczny: pierwsze z pól działa niezależnie od tego, czy ładunek się porusza, drugie – tylko na ładunki w ruchu.
Zajmiemy się przypadkiem przestrzeni wolnej od ładunków, czyli polem elektromagnetycznym w próżni. Zmienne pole magnetyczne generuje pole elektryczne – jest to zjawisko indukcji elektromagnetycznej odkryte przez Michaela Faradaya i będące fizyczną zasadą działania generatorów prądu. Z kolei zmienne pole elektryczne generuje pole magnetyczne, co odkrył James Clerk Maxwell. W ten sposób powstaje fala elektromagnetyczna, w której oba pola podtrzymują się nawzajem.
Sformułujmy matematycznie prawo indukcji Faradaya. Wyobraźmy sobie krzywą zamkniętą i rozpiętą na niej powierzchnię. Przez powierzchnię tę przechodzi pewien strumień pola magnetycznego, równy iloczynowi składowej pola normalnej do powierzchni B_n i pola powierzchni \Delta S:

\Phi_B=B_n\Delta S.

Gdyby wektor \vec{B} był prędkością cieczy, strumień byłby objętością owej cieczy przecinającą w jednostce czasu powierzchnię. Mówi się czasem, że strumień to liczba linii sił przecinających powierzchnię (linie sił biegną blisko siebie tam, gdzie pole jest duże i rozrzedzają się tam, gdzie pole maleje).


Potrzebujemy jeszcze drugiego obok strumienia pojęcia związanego z polami wektorowymi, a mianowicie krążenia. W przypadku pola elektrycznego jest to suma iloczynów składowej stycznej wektora pola E_t pomnożonych przez długości boków prostokąta na naszym obrazku

{\displaystyle \oint E_t dl=\sum E_t \Delta l.}

Prawo indukcji Faradaya mówi, że krążenie pola elektrycznego wzdłuż krzywej jest równe szybkości zmian strumienia pola magnetycznego w czasie ze znakiem minus:

{\displaystyle \oint E_t dl=\sum E_t \Delta l=-\dfrac{\Delta \Phi_B}{ dt}.}

Dodatni kierunek obiegania krzywej i dodatni strumień związane są regułą śruby prawoskrętnej: gdyby śruba taka obracała się, jak na obrazku, dodatni byłby strumień z dołu do góry. Znak minus w tym prawie fizycznie oznacza tzw. regułę Lenza: gdyby zamiast krzywej ułożyć pętlę z drutu, to pole elektryczne wywołałoby przepływ prądu. Prąd ten wytworzyłby własne pole magnetyczne i byłoby ono takie, żeby zmniejszać zmiany strumienia: gdy strumień rośnie z czasem, pole to powinno go zmniejszać. Sens tej zasady tkwi w tym, że prąd indukcyjny nie może nasilać zjawiska indukcji, które generuje jeszcze większy prąd: mielibyśmy elektrownię dostarczającą prądu za darmo, co jest niemożliwe.
Drugie potrzebne nam równanie Maxwella jest bardzo podobne, zamienione są jedynie rolami oba pola:

{\displaystyle \oint B_t dl=\sum B_t \Delta l=\mu_0\varepsilon_0 \dfrac{\Delta \Phi_E}{d t}.}

Stałe \mu_0,\,\varepsilon_0 są to przenikalności magnetyczna i elektryczna próżni, wielkości znane z pomiarów pola wytwarzanego przez ładunki i prądy. Nie ma znaku minus. Zamienione są miejscami pola elektryczne i magnetyczne.
Dla porządku dodajmy, że istnieją jeszcze dwa równania Maxwella. W przypadku próżniowym mówią one, że strumienie pola elektrycznego i magnetycznego wypływające z każdej zamkniętej powierzchni równe są zeru. W takiej postaci zapisał te równania dopiero Oliver Heaviside.

Najprostsza fala elektromagnetyczna

Obliczmy prędkość rozchodzenia się najprostszej konfiguracji pól. Jest to fala w kształcie tsunami: wartości pola równe zeru skaczą w półprzestrzeni do pewnej stałej wartości. Ponieważ równania Maxwella zawierają pola w pierwszej potędze, są liniowe, więc można z takich rozwiązań zbudować fale prostokątne, a z fal prostokątnych każde inne, wnioski będą zatem słuszne także w przypadku ogólnym.

Nasze tsunami pól elektrycznych i magnetycznych powinno rozchodzić się wzdłuż osi z, żeby strumienie przez zamknięte krzywe się zmieniały.
Gdy fala wchodzi na obszar prostokątnej pętli o szerokości w, prędkość zmiany pola powierzchni zajętego przez falę równa jest wv. Czyli szybkość zmian strumienia równa się B_y wv. Krążenie pola elektrycznego jest wyjątkowo proste, ponieważ tylko jeden bok prostokąta ma niezerowe pole. Mamy więc

-E_x w=- B_y wv\,\Rightarrow E_x=B_y v.

Podobnie, stosując równanie Maxwella do pętli prostokątnej w płaszczyźnie yz, otrzymamy

B_y w=\mu_0\varepsilon_0 E_x w v\,\Rightarrow B_y=\mu_0\varepsilon_0 E_x v.

Wstawiając pierwsze z otrzymanych równań do drugiego dostajemy

B_y=\mu_0\varepsilon_0 v^2 B_y.

Niezerowe rozwiązanie oznacza więc, że prędkość jest równa

v=\pm \dfrac{1}{\sqrt{\mu_0\varepsilon_0}}=\pm c.

Nasze „tsunami” musi rozchodzić się wzdłuż osi z z prędkością światła w próżni (możliwe są oba zwroty prędkości). Ponieważ z takich konfiguracji można zbudować dowolną falę, więc każda fala elektromagnetyczna musi rozchodzić się z prędkością c. (Przy okazji pokazaliśmy, że pola są prostopadłe do kierunku rozchodzenia się fali oraz E=cB).


W roku 1896 Albert Einstein prawdopodobnie nie potrafił tego jasno pokazać. Nawet podczas studiów na Politechnice równania Maxwella nie należały do programu, choć oczywiście Albert się tego dowiedział z własnych lektur.
Jak wówczas rozumiano ten wynik? Wydawało się naturalne, że równania Maxwella opisują zachowanie eteru – ośrodka, w którym rozchodzą się fale elektromagnetyczne tak, jak fale dźwiękowe w powietrzu. Prędkość c oznaczałaby więc prędkość względem eteru. Okazało się jednak z różnych doświadczeń, jak też i prac teoretycznych Lorentza, że jeśli poruszamy się względem eteru, to i tak prędkość się nie zmienia. Wymagało to jednak dodatkowych założeń na temat materii (skrócenie Lorentza-Fitzgeralda). W roku 1905 Einstein uznał, że najprościej jest uznać, że równania Maxwella nie opisują eteru, lecz zmiany pól w przestrzeni i czasie. Wtedy wartość c otrzymamy bez względu na to, jak szybko się poruszamy. Lumen nie mógłby więc prześcignąć fal świetlnych: bez względu na to, jak szybko by pędził, światło uciekałoby mu z prędkością c. Oczywiście, możliwe teoretycznie jest wysłanie ku nam z powrotem sygnałów z przeszłości. Tak się dzieje w powieści SF Carla Sagana Kontakt. Odebrane sygnały z kosmosu okazują się tam transmisją telewizyjną z otwarcia Igrzysk Olimpijskich w Berlinie z udziałem Adolfa Hitlera (była to jedna z najwcześniejszych prób tego rodzaju, pokaz technicznej potęgi III Rzeszy).

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s