Erwin Schrödinger: trzeci początek mechaniki kwantowej (1926)

Równanie Schrödingera zasługuje na swoją sławę: dzięki niemu znamy nie tylko budowę atomów, ale i cząsteczek chemicznych czy ciał skondensowanych. Wynikają z niego najprzeróżniejsze własności materii, która nas otacza, a także materii we wszechświecie. Jest więc równaniem niezwykle istotnym tak dla fundamentów fizyki, jak i dla zastosowań.

Autor najsłynniejszego równania dwudziestowiecznej fizyki aż do roku 1926 nie należał do ścisłej czołówki fizyków teoretycznych. Zaledwie osiem lat młodszy od Einsteina, dopiero od 1921 roku zajmował katedrę na uniwersytecie w Zurychu. Studiował w Wiedniu, zbyt późno by zetknąć się osobiście z Ludwigiem Boltzmannem czy Ernstem Machem, choć wpływ obu tych uczonych wciąż dawał się tam odczuć. Fizyki teoretycznej uczył się u Friedricha Hasenöhrla, bliskiego przyjaciela Mariana Smoluchowskiego. Do tej pory niewiele zajmował się teorią kwantową, ponieważ opierała się ona wciąż na bardzo grząskich podstawach, korzystając po trosze z fizyki klasycznej, a po trosze z postulatów kwantowania, wyraźnie z nią sprzecznych. Zwrócił jednak uwagę na pracę Louisa de Broglie na temat fal materii. Postulowała ona, że zarówno fotony, jak i inne cząstki mikroświata mają dualną naturę: zachowują się czasem jak cząstki, a czasem jak fale. Obowiązywał przy tym jeden uniwersalny przelicznik własności cząstkowych: energii E i pędu p na wielkości falowe: częstość (kołową) \omega i liczbę falową k\equiv\frac{2\pi}{\lambda} (\lambda jest długością fali). Współczynnikiem proporcjonalności w obu przypadakch miała być stała Plancka \hbar:

E=\hbar\omega,\,p=\hbar k.

Felix Bloch, wówczas początkujący fizyk, tak wspomina wspólne kolokwia (dziś powiedzielibyśmy raczej seminaria) fizyków z uniwersytetu w Zurychu i z ETH, gdzie najważniejszą postacią był Peter Debye.

Pewnego razu pod koniec kolokwium Debye powiedział coś w tym rodzaju: „Schrödinger nie zajmujesz się teraz żadnym ważnym tematem. Może opowiedziałbyś nam któregoś dnia o tym doktoracie de Broglie’a, który, zdaje się, przyciągnął sporo uwagi”. Więc na jednym z następnych kolokwiów Schrödinger przedstawił cudownie przejrzysty wykład o tym, jak de Broglie wiąże fale z cząstkami i w jaki sposób zdołał on uzyskać reguły kwantyzacji Bohra i Sommerfelda (…) Kiedy skończył, Debye stwierdził od niechcenia, że taki sposób ujęcia jest raczej dziecinny. Jako student Sommerfelda nauczył się, że właściwy sposób podejścia do fal wiedzie przez równanie falowe. Brzmiało to dość trywialnie i na pozór nie zrobiło głębszego wrażenia, ale Schrödinger najwyraźniej wrócił później do tego pomysłu. Zaledwie kilka tygodni później dał następne kolokwium, zaczynając od słów: „Kolega Debye zasugerował, że należy mieć równanie falowe, toteż je znalazłem”. [„Physics Today”, t. 29 (1976), nr 12, s. 23-24]

Najwyraźniej w pierwszej chwili obaj nie zdawali sobie sprawy z wagi tych badań. Erwin Schrödinger dzięki pracom z końca roku 1925 i roku 1926 stał się błyskawicznie jednym z najgłośniejszych fizyków świata. Seria jego artykułów natychmiast zyskała uznanie. Chwalili je Albert Einstein i Arnold Sommerfeld, który wraz ze swymi uczniami rozwijał od lat fizykę kwantową. Napisał do niego sędziwy Hendrik Lorentz, który uważnie śledził nowości i miał parę istotnych uwag. Surowy i poważny Max Planck, profesor najbardziej prestiżowej katedry w Niemczech (co wtedy znaczyło: najbardziej prestiżowej na świecie) – na uniwersytecie w Berlinie, pisał entuzjastycznie do Schrödingera:

Czytam pański artykuł tak, jak ciekawe dziecko, słuchające w napięciu rozwiązania zagadki, nad którą się długo głowiło, i cieszę się bardzo wszystkimi pięknościami, jakie tam dostrzegam, choć muszę go jeszcze dokładniej przestudiować, by wszystko z niego pojąć.

Kiedy w grudniu 1925 roku Schrödinger znalazł swe równanie, był to trzeci początek mechaniki kwantowej albo – jak wolał o tym mówić autor odkrycia – mechaniki falowej. Na pierwszy rzut oka nie miało to nic wspólnego z teorią Heisenberga, Borna, Jordana i Diraca. U Schrödingera nie było żadnych skoków kwantowych, żadnych wielkości macierzowych, nieprzemiennych iloczynów. Język był całkowicie klasyczny – była to matematyka drgań, dobrze już wówczas opracowana. W roku 1924 wyszła dwutomowa monografia Methoden der mathematischen Physik („Metody fizyki matematycznej”) zredagowana przez Richarda Couranta i innych matematyków z Getyngi na podstawie wykładów Davida Hilberta. Zawierała ona wiele materiału, który miał się okazać potrzebny fizykom za kilka lat. Jak na ironię metody Hilberta zastosowali pierwsi nie fizycy z grupy Maksa Borna, pracujący przecież głównie pod bokiem Hilberta w Getyndze, ale Erwin Schrödinger, outsider i naukowy samotnik. Fizycy z Getyngi zlekceważyli nawet wyraźną sugestię Hilberta w jednej z rozmów, że powinni poszukać równania różniczkowego, które opisuje skwantowane wartości energii. Nie próbowali iść tym tropem, przekonani, że ich mechanika kwantowa jest czymś całkowicie nowym i nie może się zawierać w książce sprzed paru lat. Źle przyjęli też pracę Schrödingera, która wydawała się recydywą fizyki klasycznej, odwrotem od kwantowej rewolucji spod sztandaru Heisenberga.

Fizycy klasyczni znali wiele przypadków drgań układów rozciągłych, czyli fal stojących. Są one np. podstawą wytwarzania dźwięku w instrumentach muzycznych takich, jak organy, flet, trąbka czy skrzypce. Wiadomo, że zamocowana na końcach struna drgać może tylko z określonymi ściśle częstościami: podstawową oraz jej wielokrotnościami. Rozważano różne bardziej skomplikowane możliwości, pisaliśmy tu o rówieśniku Einsteina, fizyku z Getyngi, Waltherze Ritzu. Idea Schrödingera polegała na tym, by wartości energii w atomie potraktować analogicznie do częstości dźwięku w pudle rezonansowym, stosując równanie falowe. Ma ono w przypadku trójwymiarowym postać:

\dfrac{\partial^2\psi}{\partial x^2}+\dfrac{\partial^2\psi}{\partial y^2}+\dfrac{\partial^2\psi}{\partial z^2}-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}\equiv \Delta\psi-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}=0,

gdzie v jest prędkością fal. Jeśli przyjmiemy, że nasze fale są okresowe i mają częstość \omega, możemy rozwiązania zapisać jako

\psi(x,y,z, t)=\psi(x,y,z)e^{\pm i\omega t}.

Drugą pochodna po czasie jest ta sama funkcja wykładnicza pomnożona przez stałą. Wstawiając to do równania falowego, otrzymujemy tzw. równanie Helmholtza (który pod koniec XIX wieku był profesorem w Berlinie):

\Delta \psi+k^2 \psi=0.

W równaniu tym skorzystaliśmy z tego, że \dfrac{\omega}{v}=k. Droga Schrödingera do odkrycia była dość zawikłana. Związki de Broglie’a są relatywistyczne, naturalne wydawało się więc zapisanie równania relatywistycznego. Jednak kiedy spróbujemy je rozwiązać w najprostszym przypadku atomu wodoru, okazuje się, że dopuszczalne energie nie zgadzają się z tym, co wcześniej, w starej teorii kwantów obliczył Sommerfeld i co zgadzało się z doświadczeniem (szczegóły można znaleźć u L. Schiffa, Mechanika kwantowa, s. 409 i n.). Dwa lata później sytuacja się wyjaśniła: potrzebne tu jest równanie Diraca. Dwa lata w tamtej chwili rozwoju fizyki to było więcej niż epoka, Schrödinger znajdował się dopiero u początków tej drogi i nie mógł wiedzieć, co stanie się dalej. Rozsądnie zdecydował się więc na przybliżenie nierelatywistyczne, robiąc niejako krok wstecz w porównaniu do de Broglie’a. Nie pójdziemy tu jego drogą, a właściwie kilkoma różnymi drogami, jakimi próbował uzasadnić swe równanie. Wybierzemy podejście najprostsze zaproponowane pół roku później przez Maksa Borna – musimy jednak pamiętać, że nie jest to wyprowadzenie. Nie można bowiem wyprowadzić praw mechaniki kwantowej z praw klasycznych. Dla cząstki o masie m i całkowitej energii E możemy napisać równanie zachowania energii:

E=\dfrac{\hbar^2 k^2}{2m}+V(x,y,z),

gdzie V jest energią potencjalną (pierwszy składnik to zwykła energia kinetyczna). Jeśli wyznaczymy k^2 z ostatniego równania i wstawimy do równania Helmholtza, otrzymamy tzw. równanie Schrödingera bez czasu:

-\dfrac{\hbar^2}{2m}\Delta\psi+V\psi=E\psi.

Chcąc np. opisać ruch elektronu wokół nieruchomego jądra atomowego o ładunku Ze, należy wstawić do równania Schrödingera energię potencjalną postaci

V(r)=-\dfrac{Ze^2}{4\pi \epsilon_0 r},

czyli zwykłą energię potencjalną przyciągania elektrostatycznego dwóch ładunków Ze oraz -e w odległości r. Szukamy takich funkcji \psi(x,y,z), które daleko od jądra zanikają. Okazuje się, że rozwiązania takie są możliwe tylko dla dyskretnych wartości energii równych

E_n=-\dfrac{me^4}{2(4\pi\epsilon_0)^2 \hbar^2}\dfrac{1}{n^2}, \mbox{ gdzie } n=1,2, 3, \ldots.

 Jest to wynik uzyskany w roku 1913 przez Bohra z założeń, które od początku wydawały się aktem rozpaczy, a nie solidną nauką. Równanie Schrödingera miało więc sens, choć nadal brakowało pewnych elementów do kompletnej teorii. Jednym z najważniejszych było znaczenie samej funkcji \psi. Kiedy w piszczałce organowej czy w rurce fletu wytwarzany jest dźwięk, wiemy, co drga – jest to powietrze, które ściśnięte się rozpręża, a rozprężone wraca do początkowej gęstości. Co drga w atomie wodoru? Jakie jest znaczenie funkcji \psi? Co gorsza, okazało się, że powinna ona mieć wartości zespolone, z pewnością nie było to żadne proste drganie klasyczne. Geniusz Schrödingera ujawnił się i w tym, że nie próbował odpowiedzieć na wszystkie pytania naraz i pozwolił swoim ideom rozwijać się w czasie. Publikacje uczonego z pierwszego półrocza 1926 roku wystarczyły na Nagrodę Nobla i objęcie w roku 1927 katedry w Berlinie po odchodzącym na emeryturę Maksie Plancku.

Erwin Schrödinger, człowiek wszechstronnie wykształcony, o szerokich zainteresowaniach, całkowicie zaprzecza ascetycznej wizji uczonego, który nie ma czasu na nic oprócz nauki. Wydaje się wręcz, że jego pomysłowość przy stworzeniu słynnego równania szła w parze z gorączką miłosną. Praca ta powstała w uzdrowisku Arosa, gdzie wybrał się w towarzystwie do dziś nie znanej flamy. Jego małżeństwo należało do nowoczesnych i partnerzy pozostawiali sobie bardzo wielką swobodę. Były przecież lata dwudzieste: kobiety odsłoniły nogi, tańczono charlestona, wszyscy chcieli zapomnieć o koszmarze niedawnej wielkiej wojny.

 

 

 

 

 

Reklamy

Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.

 

 

Jak gęsta może być materia? Białe karły, Stoner i Chandrasekhar (1930-1931)

31 lipca 1930 roku z Mumbaju odpłynął parowiec „Lloyd Triestino”. Wśród pasażerów znajdował się dziewiętnastoletni Subrahmanyan Chandrasekhar, udający się do Anglii stypendysta rządu indyjskiego. Zdążył on opublikować już pierwszą pracę na temat statystyk kwantowych, dwa lata wcześniej dowiedział się od przebywającego gościnnie w Indiach Arnolda Sommerfelda, że całej fizyki mikroświata należy nauczyć się na nowo i wszystkie podręczniki sprzed kilku lat są już nieaktualne. Zaczął więc z zapałem czytać artykuły dotyczące mechaniki kwantowej i pierwszą swą pracę wysłał do Anglii do Ralpha Fowlera z Cambridge. Wiedział o nim tylko tyle, że uczony ten zaproponował kwantowe wyjaśnienie problemu tzw. białych karłów – niewielkich gwiazd zbudowanych z niezwykle gęstej materii nawet 100 000 razy gęstszej od wody. Astronomowie, którzy uzyskiwali tak wysokie szacowania gęstości, nie potrafili zrazu w nie uwierzyć, sądząc, że w obliczenia musiał wkraść się jakiś niezidentyfikowany błąd. W astronomii dość często się zdarza, że trzeba rewidować dotychczasowe założenia i wyniki. Podczas podróży Chandrasekhar unikał balów i wieczorków organizowanych na statku, był zresztą wegetarianinem i nie brał do ust wielu podawanych potraw. Pracował. Jego obliczenia wskazywały, że białe karły nie mogą być zbyt masywne, gdyż nie będą stabilne. Wynik ten stał w sprzeczności z dotychczasową wiedzą i Chandrasekhar miał stoczyć trudną wieloletnią walkę o uznanie prawdziwości jego obliczeń. Białe karły są ostatnim stadium ewolucji gwiazd i nie mogą być bardziej masywne niż 1,4 masy Słońca. Co w takim razie dzieje się z gwiazdami pięcio-, dziesięcio- i dwudziestokrotnie bardziej masywnymi? Czy jest możliwe, że pozbywają się one w jakiś sposób niemal całej swej masy, aby osiągnąć w końcu stadium białego karła? Jeśli tak, to czy może się to odbywać w długim czasie w sposób spokojny, czy też należy spodziewać się eksplozji? Wynik Chandrasekhara miał przełomowe znaczenie, bo wskazywał, że grawitacja może stać się siłą, która dosłownie kruszy materię. O jego wadze świadczy fakt, iż pół wieku później za tę pracę indyjski uczony otrzymał Nagrodę Nobla. Spędził długie i twórcze życie naukowe, stając się jednym z najbardziej znanych astrofizyków dwudziestego wieku, a jednak właśnie to młodzieńcze osiągnięcie wydawało się godne uhonorowania najważniejszą nagrodą.

W Londynie pierwszą książką, którą kupił Chandrasekhar, były Principles of Quantum Mechanics, fundamentalne, pomnikowe dzieło dwudziestoośmioletniego Paula Diraca, który zdążył już stać się klasykiem tej młodej dziedziny. W istocie były to lata zupełnie wyjątkowe w dziejach fizyki: niemal każda nowa praca miała szanse przejść do historii. Odkrywano bowiem kolejne zastosowania nowego formalizmu: w fizyce, w chemii, w astrofizyce. Zasady wprowadzone dla wyjaśnienia zjawisk atomowych okazały się w zasadniczym zrębie słuszne także w fizyce jąder atomowych, cząstek elementarnych, pozwalały też zrozumieć, jak przebiegają zjawiska we wszechświecie: od źródeł energii gwiazd, przez ich budowę oraz rodzaje wysyłanego promieniowania. Był to okres pionierski, gdy wyznaczano dopiero granice nowego terytorium i wciąż przesuwały się one dalej. Coś takiego zdarza się niezwykle rzadko, a w życiu uczonego najwyżej raz. Chandrasekhar znalazł się też w znakomitym miejscu: Trinity College w Cambridge, gdzie pracowali Fowler i jego niedawny doktorant Dirac, a także Arthur Stanley Eddington, astrofizyk, autor książki The Internal Constitution of the Stars, którą starannie przestudiował i z której korzystał podczas pracy na statku.

Na czym polegał problem białych karłów? W dostępnych nam eksperymentalnie warunkach materii nie można zbyt mocno ścisnąć. Atomy zachowują się bowiem jak sztywne kulki i nawet pod wielkim ciśnieniem gęstość ciał stałych niemal się nie zmniejsza się, ledwie przekraczając – w przypadku najcięższych metali – dwudziestokrotność gęstości wody. Większą gęstość – ponad sto gęstości wody – osiąga materia blisko centrum Słońca. Składa się ona głównie z produktów jonizacji wodoru: protonów i elektronów o bardzo wysokiej temperaturze. Mimo tak wielkich gęstości plazmę tę wciąż można traktować jak gaz doskonały. Przeskok do gęstości milion razy większych od gęstości wody nie wydawał się fizycznie możliwy bez temperatur sięgających miliony stopni, powierzchnia białego karła świeciła w zakresie widzialnym jak gwiazda, musiała więc mieć temperaturę liczoną w tysiącach stopni.

Kwantowe wyjaśnienie zaproponował Ralph Fowler, pod którego patronatem, lecz zupełnie samodzielnie, pracował Paul Dirac. Elektrony są, jak dziś mówimy, fermionami, tzn. podlegają szczególnemu ograniczeniu: w jednym stanie kwantowym może znajdować się jeden elektron (a jeśli ignorujemy stany spinowe, to dwa różniące się rzutem spinu). Właśnie Paul Dirac obok Enrico Fermiego pierwszy zaproponował kwantowomechaniczny opis takich cząstek (nazwa fermiony, a nie np. dirakiony, nie ma głębszego uzasadnienia historycznego, a prawdopodobnie jedynie fonetyczne). Samą zasadę jeden stan – jeden elektron zaproponował zresztą nieco wcześniej Wolfgang Pauli, jeszcze jeden z dwudziestoparolatków wywracających wtedy fizykę do góry nogami. Zasada ta wyjaśnia sposób zapełniania się powłok i podpowłok w atomach. Fowler wyobraził sobie, że biały karzeł cały jest jedną wielką cząsteczką, w której elektrony tworzą coś w rodzaju gazu. Było to pierwsze zastosowanie tej idei, nieco później Arnold Sommerfeld zastosował ją do elektronów w metalach.

W atomie stan określają liczby kwantowe. W przypadku elektronów zamkniętych w gwieździe niczym w pudle skwantowane są ich wartości pędu. Dozwolone wartości tworzą sieć punktów kratowych w przestrzeni pędu (bez początku, ponieważ pęd całkowity równy zeru jest zabroniony przez zasadę nieoznaczoności). Rysunek przedstawia takie  pudło w 2D. Elektrony będą stopniowo zapełniać dozwolone stany aż do pewnej maksymalnej wartości pędu p_F, zwanej pędem Fermiego.

Jest to tzw. zdegenerowany gaz elektronowy. W pierwszym przybliżeniu można ograniczyć się do temperatury zerowej, ponieważ energia elektronów w tej sytuacji wynika nie z wysokiej temperatury, ale stąd, że wszystkie niższe stany energetyczne są zajęte. Objętość komórki w przestrzeni pędów przypadająca na dwa elektrony o różnym spinie równa jest

\Delta p_x\Delta p_y\Delta p_z=\dfrac{h^3}{V},

gdzie h jest stałą Plancka, a V objętością gwiazdy/pudła z elektronami. Widzimy, że gdy objętość pudła maleje, komórki w przestrzeni pędu rosną i przy tej samej liczbie elektronów pęd Fermiego wzrośnie. Oznacza to, że wraz z gęstością gwiazdy rośnie energia kinetyczna elektronów (równa \frac{mv^2}{2}=\frac{p^2}{2m}). Gwiazda utrzymywana jest siłami grawitacyjnymi. Energia grawitacyjna kuli o masie M i promieniu R równa jest

E_p=-\alpha \dfrac{GM^2}{R},

gdzie \alpha jest współczynnikiem zależnym od rozkładu gęstości i równym \frac{3}{5} dla kuli jednorodnej. Grawitacja jest siłą przyciągającą, więc energia rośnie tu, gdy zwiększa się promień: gdyby działała jedynie grawitacja, materia skurczyłaby się do punktu. Można znaleźć punkt równowagi, gdy suma energii kinetycznej elektronów oraz energii potencjalnej grawitacji jest najmniejsza. Promień gwiazdy jest wówczas równy

R\approx 1,15 a_B \lambda \dfrac{1}{N_n^{1/3}},

gdzie a_B=0,5\cdot 10^{-10} m jest promieniem Bohra, \lambda=1,25\cdot 10^{36} to stosunek sił elektrostatycznych do sił grawitacyjnych między protonami, a N_n jest łączną liczbą nukleonów w gwieździe. Widzimy, że im większa gwiazda, tym mniejszy promień, a więc gęstość gwiazdy rośnie jak kwadrat masy, co jest zachowaniem dość osobliwym. Promień obliczony z powyższego wzoru okazuje się dla gwiazdy o masie Słońca tego samego rzędu co promień Ziemi: a więc ogromna masa Słońca skupiłaby się w objętości zbliżonej do Ziemi. Znaczy to, że materia gwiazdy osiąga ogromne gęstości. Rzeczywiste gęstości są jeszcze większe, niż sądzono w latach trzydziestych i przekraczają milion gęstości wody. Gaz elektronowy pozwalał też objaśnić, czemu biały karzeł nie skurczy się już więcej: w istocie temperatura ma niewielki wpływ na konfigurację elektronów i struktura taka jest stabilna nawet w zerze absolutnym.

Praca Fowlera uchodzi za najwybitniejszą pozycję w jego dorobku: była w zasadzie rzuceniem idei, ale idei znakomitej, podjętej potem nie tylko w astrofizyce, ale i w fizyce ciała stałego. Jedna tak płodna idea i jeden doktorant tej klasy co Dirac, to zdecydowanie wystarczy na spełnioną karierę naukową.

Obliczenia takie, jak zarysowane powyżej, wykonał Edmund Stoner w 1929 roku. Interesowało go pytanie, czy istnieje maksymalna gęstość materii? Stoner także należał do ludzi Cambridge, jednak jego doktorat był eksperymentalny i nie odebrał on matematycznego wykształcenia, które zawsze było mocną stroną tamtejszych absolwentów. Mimo to zajął się teorią i to z powodzeniem. Jego praca The distribution of electrons among atomic energy levels z 1924 roku zainspirowała Wolfganga Pauliego do sformułowania słynnej zasady wykluczania. W reakcji na artykuł Stonera mało znany fizyk Wilhelm Anderson, pracujący w Tartu w Estonii, zwrócił uwagę, że przy dużych gęstościach, duży będzie pęd Fermiego i nie można używać newtonowskiego wyrażenia na energię kinetyczną (\frac{1}{2}mv^2), lecz należy zastosować wyrażenie relatywistyczne

E=\sqrt{(pc)^2+(mc^2)^2}\approx pc.

W przypadku skrajnie relatywistycznym obowiązuje przybliżenie zapisane powyżej. Okazuje się, że teraz nie dla każdej masy istnieje rozwiązanie i biały karzeł musi mieć masę nieprzekraczającą pewnej wartości granicznej. Anderson wyznaczył tę granicę, choć jego praca nie była całkowicie poprawna. Stoner w następnym artykule uwzględnił relatywistyczne wyrażenie na energię elektronów i prawidłowo wyznaczył maksymalną liczbę nukleonów, a więc i masę białego karła:

N_n =0,77 \left(\dfrac{c\hbar}{Gm_n^2}\right)^{\frac{3}{2}} \sim \left(\dfrac{m_{P}}{m_n}\right)^3.

Po prawej stronie wyraziliśmy tę wielkość przez masę Plancka m_P: jest to kombinacja trzech fundamentalnych stałych fizycznych – stałej Plancka, prędkości światła i stałej grawitacyjnej. Maksymalna masa zwana jest granicą Chandrasekhara i po uwzględnieniu współczynników liczbowych równa jest 1,4 masy Słońca. Przyjmujemy, że na każdy elektron przypadają dwa nukleony.

Zależność promienia białego karła od masy (https://en.wikipedia.org/wiki/Chandrasekhar_limit)

Naszkicowane przez nas podejście zakłada minimalizację energii w jednorodnym gazie elektronowym. Tak właśnie obliczył to Stoner. Subrahmanyan Chandrasekhar wybrał podejście bardziej szczegółowe, w którym analizuje się warunki równowagi w gwieździe. Jego pierwsza praca, pisana podczas podróży do Anglii, była tylko krótkim zarysem, szczegółowe rozwinięcie podał w następnych latach. Prowadzi ono do podobnych wniosków, nieco różniących się liczbowo. Czemu więc granica ta związana została w historii jedynie z nazwiskiem Chandrasekhara? Jak się zdaje, Edmund Stoner nie walczył zbytnio o priorytet. Być może tematyka astrofizyczna nie była mu tak bliska jak Chandrasekharowi, stopniowo zajął się bowiem fizyką ciała stałego.

Także Lew Landau otrzymał graniczną wartość masy w bardzo eleganckiej krótkiej pracy z 1931 roku. Jednak graniczna wartość masy wydawała mu się wnioskiem absurdalnym. Pisał: „Ponieważ w rzeczywistości masy takie spokojnie sobie istnieją jako gwiazdy, nie wykazując żadnych takich absurdalnych tendencji, musimy wywnioskować, że wszystkie gwiazdy o masie przekraczającej 1,5 masy Słońca zawierają z pewnością obszary, w których prawa mechaniki kwantowej (a więc także statystyki kwantowej) są naruszone” (Neutron Stars, Black Holes and Binary X-Ray Sources, ed. H. Gursky, R. Ruffini, D. Reidel 1975, s. 272). Musimy zdawać sobie sprawę, że zarówno teoria względności, jak i mechanika kwantowa były względnie nowymi dziedzinami i nie było jasne, czy nie pojawią się nowe idee, które zmienią zasadniczo punkt widzenia. Dopiero z perspektywy dziesięcioleci widać, że zarówno teoria względności, jak i fizyka kwantowa zostały w fizyce na dobre i są niezmiernie odporne na wszelkie „poprawianie” – to dlatego trudno jest w fizyce o nowe pomysły, muszą one bowiem stanowić uogólnienie tego, co już znamy, a co zostało bardzo dokładnie przetestowane teoretycznie i przede wszystkim eksperymentalnie.

Chandrasekhar bardzo zaciekle bronił wniosku o maksymalnej masie białego karła. Arthur Eddington – podobnie jak Landau – uważał go za absurd. W ciągu kilku lat spór między Eddingtonem, uznanym autorytetem, a młodym uczonym z Indii stał się na tyle gorący, że Chandrasekhar nie mógł pozostać w Trinity College i wyjechał do Stanów Zjednoczonych.

Rację miał Chandrasekhar (i Stoner). Gwiazdy o dużych masach nie mogą stać się białymi karłami. Mogą zostać gwiazdami neutronowymi, w których materia ma gęstość zbliżoną do materii jądrowej. Znów jednak pojawia się graniczna wartość masy, powyżej której niemożliwe jest stabilne istnienie gwiazdy neutronowej. Przy dużych masach grawitacja zwycięża i jedyną możliwością staje się utworzenie czarnej dziury. Granica Chandrasekhara była pierwszą wskazówką, że struktura materii nie jest odporna na grawitacyjne zapadanie się. Być może zaakceptowanie tej sytuacji było trudne także dlatego, że intuicyjnie chcemy wierzyć w stabilny świat, dający nam metafizyczne i psychologiczne oparcie. Dlatego kłopoty miał Galileusz, z tego samego powodu zwalczano teorię ewolucji, a także niechętnie uznano teorię Wielkiego Wybuchu. Uświadomienie sobie, że zamieszkujemy narażony na rozmaite kataklizmy kawałek skalnej skorupy pływający w ciekłym podłożu i krążący po niezbyt stabilnej orbicie w zmieniającym się ciągle i katastroficznym wszechświecie, nie poprawia, by tak rzec, filozoficznego samopoczucia.