Zanim zaśniesz, pomyśl, jak wiele zawdzięczasz Ptolemeuszowi

Każdy z nas, żyjących, jest dzieckiem szczęścia: nasze drzewo genealogiczne nie miało żadnych luk – inaczej nie przyszlibyśmy na świat. Odziedziczyliśmy jednak znacznie więcej niż geny: stoi za nami cała cywilizacja, korzystamy z dorobku pokoleń ludzi przemyślnych, inteligentnych, czasami genialnych. Od teorii promieniowania Einsteina przez pierwsze lasery w latach sześćdziesiątych dwudziestego wieku aż do odtwarzaczy Blue-ray i skanerów kodów paskowych w sklepie czy w bibliotece prowadzi droga długa, lecz możliwa do prześledzenia. Na szczęście nie musimy sami tej drogi powtarzać, korzystamy z gotowych wytworów, sprawdzonych technologii, podręczników udostępniających wiedzę kolejnym pokoleniom. Podobnie jest z tysiącem innych przedmiotów, wynalazków, odkryć. Cóż bardziej naturalnego?

Jeśli cofniemy się w czasie dostatecznie daleko, postęp wiedzy przestaje być w jakimś momencie oczywisty. Nasza cywilizacja naukowo-techniczna zaczęła się w XVII wieku na zachodzie Europy i stopniowo rozprzestrzeniła (w różnym stopniu) na resztę świata. Poprzednie wieki przynosiły bardzo powolny postęp, jeśli w ogóle go przynosiły. Kiedy upadło imperium rzymskie, przez całe wieki działo się w chrześcijańskiej części Europy bardzo niewiele dobrego. Cesarz Karol I nie potrafił nawet pisać i choć na starość mozolnie ćwiczył na woskowych tabliczkach, nie udało mu się jednak tej sztuki opanować. Przez wieki odsetek ludzi potrafiących pisać był znikomy, a przecież od czytania i pisania do twórczego uprawiania nauki jest jeszcze parę szczebli do pokonania. Dopiero po długiej, mniej więcej tysiącletniej przerwie Europa przyswoiła sobie dorobek nauki greckiej. Kopernik przy całej swej oryginalności był zaledwie uczniem Ptolemeusza i jego islamskich kontynuatorów.

Jednym z najważniejszych wątków w historii nauki była teoria ruchów planet, dziedzina na pozór mało praktyczna i odległa od zastosowań. Kto wie jednak, czy to nie teoria astronomiczna Ptolemeusza przesądziła o sukcesie zachodnioeuropejskiej nauki. Bez Ptolemeusza nie byłoby Kopernika, bez Kopernika trudno wyobrazić sobie Newtona, a bez Newtona całej reszty. To oczywiście tylko skrót rozumowania, ale można by je rozbudować. Zagadnienie ruchów planet wymagało dokładnych obserwacji i najlepszych dostępnych technik matematycznych od trygonometrii aż do analizy matematycznej i teorii równań różniczkowych.

Derek J. de Solla Price, amerykański historyk nauki, uważał, iż to właśnie astronomia Klaudiusza Ptolemeusza sprawiła, że nauka rozwinęła się w Europie, a nie np. w Chinach czy wśród Majów:

Można więc zaryzykować twierdzenie, że ta zwarta teoria stanowi intelektualne plateau naszej kultury – wysokie plateau, występujące wyłącznie u nas. We wszystkich dziedzinach nauki wszystkich innych kultur nie ma niczego, co mogłoby zaćmić tę wczesną, a tak wyrafinowaną i zaawansowaną próbę czysto matematycznego wyjaśnienia przyrody. Gdybyśmy mieli wskazać na jakiś cud w naszej historii intelektualnej, to nie wiadomo, czy nie tu właśnie należałoby szukać źródła naszej nowożytnej nauki. [Węzłowe problemy historii nauki, przeł. H. Krahelska, s. 15]

Dzieło Ptolemeusza, znane jako Almagest, było w istocie podsumowaniem długiej tradycji. Tak samo zresztą jak Elementy Euklidesa – druga najważniejsza książka naukowa Greków. Teksty się wówczas przepisywało, siłą rzeczy zostawały więc te najlepsze, przekazujące najbardziej uporządkowaną wiedzę, nikomu by się nie chciało opłacać kopisty dla powielenia rzeczy miernych. Almagest zawiera opis ruchu planet: możemy obliczyć za jego pomocą, gdzie danego dnia o danej godzinie będą się znajdować która planeta. I wynik będzie całkiem dokładny, jak na obserwacje przeprowadzane gołym okiem. Jest to więc kompletna szczegółowa teoria ruchów ciał niebieskich. Dzisiejsi inżynierowie, którzy modelują matematycznie np. przepływy powietrza wokół skrzydeł samolotu, kontynuują tę tradycję. Wiemy teraz, że za pomocą modeli matematycznych opisać można mnóstwo różnych zjawisk. Przyroda jest matematyczna, ale także i ekonomia czy nauki społeczne korzystają z matematyki.

Były dwie tradycje astronomiczne w tej części świata: babilońska i grecka. Klaudiusz Ptolemeusz opisał, ale także i rozwinął tradycję grecką. Babilończycy posługiwali się ciągami liczb, byli rachmistrzami. Ich astronomia była całkiem precyzyjna, ale przypominała długi wydruk wyników jakiegoś programu komputerowego bez użycia grafiki. Babilończycy obliczyli np. bardzo dokładnie wartość \sqrt{2}, ale to Grecy udowodnili, iż jest to liczba niewymierna. Dla nich był to stosunek długości przekątnej kwadratu do jego boku. Także ruch planet Grecy opisali w sposób geometryczny. Podstawą był ruch po okręgu. Wyobrażano sobie np., że roczny ruch Słońca zachodzi po okręgu. Hipparch zmierzył jednak długości astronomicznych pór roku: żadna z nich nie trwała równe ćwierć roku. Poradził sobie z tym w taki sposób, że uznał, iż Słońce porusza się wprawdzie po okręgu ruchem jednostajnym, ale Ziemia położona jest w pewnej odległości od środka okręgu. Znalazł odpowiednie parametry, żeby wszystko się zgadzało. Jego model zastosował potem niemal bez zmian Mikołaj Kopernik: zamienił tylko miejscami Ziemię i Słońce.

hipparch

Zobaczmy np., jak Ptolemeusz opisywał ruch planety takiej, jak Mars (analogiczne modele działają dla pozostałych dwóch planet górnych: Saturna i Jowisza). Mars zazwyczaj porusza się względem gwiazd z zachodu na wschód, ale od czasu do czasu, wtedy, gdy jest najjaśniejszy zmienia kierunek ruchu. Wygląda to tak.

marsretro

Jasne jest, że tutaj nie wystarczy taki prosty model jak w przypadku Słońca. Spójrzmy na to najpierw z perspektywy heliocentrycznej, do której jesteśmy przyzwyczajeni. (Pomijamy dalej fakt, że płaszczyzny orbit Ziemi i Marsa są lekko nachylone, nie popełniamy dużego błędu, płaszczyzny te przecinają się pod kątem mniejszym niż 2^{\circ}, Ptolemeusz miał osobną teorię dla opisania tego tzw. ruchu w szerokości.) Mamy dwa wektory opisujące ruch Marsa \vec{r}_M i Ziemi \vec{r}_Z. Końce obu tych wektorów zakreślają elipsy, ale są one w praktyce bardzo bliskie okręgom. To, co obserwujemy, to kierunek od Ziemi do Marsa (starożytni astronomowie niewiele wiedzieli o odległościach). Możemy zapisać wektor od Ziemi do Marsa jako różnicę:

\vec{R}=\vec{r}_M-\vec{r}_Z=\vec{r}_M+(-\vec{r}_Z)

ptolemeusz

Druga równość zilustrowana jest na rysunku z prawej strony. To jest właśnie model Ptolemeusza. Widać, że jeśli okręgi stanowią dobre przybliżenie orbit, model taki będzie działać. Duży okrąg nazwano później deferentem, mały – epicyklem. Z historycznego punktu widzenia największą zaletą modelu Ptolemeusza okazała się możliwość przejścia do heliocentryzmu, czyli od obrazka z prawej strony do obrazka z lewej. Gdybyśmy nie mieli geometrycznych przedstawień, byłoby to znacznie trudniejsze. Dokładnie biorąc, model Ptolemeusza zawierał jeszcze dwa szczegóły, które znacznie poprawiały zgodność z obserwacjami. Ziemia była nieco odsunięta od środka deferentu – inaczej mówiąc, Słońce było odsunięte od środka okręgu (orbity Marsa na lewym rysunku). Drugim szczegółem – i to jest wkład samego Ptolemeusza – jest ruch niejednostajny po deferencie. W obrazie kopernikańskim odpowiadałoby to niejednostajnemu ruchowi po orbicie, rzeczywiście planeta bliżej Słońca porusza się szybciej, to skutek zasady zachowania momentu pędu, jak podczas piruetów na lodzie: ręce wzdłuż ciała skutkują szybszym wirowaniem. Jak jednak Grek z II w.n.e., dysponując tylko prostą trygonometrią, mógł opisać taki ruch niejednostajny? Ptolemeusz przyjął, że istnieje wewnątrz deferentu pewien punkt E taki, że obserwowany z niego ruch środka epicykla jest jednostajny. Założenie to krytykowały później niezliczone pokolenia astronomów, z Kopernikiem włącznie, ale sprawdza się ono znakomicie w praktyce.

Tutaj można zobaczyć model Ptolemeuszowy dla Marsa w ruchu (warto włączyć ślad planety: Trail on, żeby zobaczyć, jak skomplikowany jest ten ruch z ziemskiego układu odniesienia, skomplikowane spirale zakreślane przez planetę nigdy się nie powtarzają)

Klaudiusz Ptolemeusz mógłby świetnie się nadawać na portret na T-shircie, nie wiemy jednak, jak wyglądał. Nie znamy nawet jego imienia: Klaudiusz Ptolemeusz to jego nomen i cognomen, czyli dwa człony nazwiska. Żył w II w. w Aleksandrii, która nieco przypominała dzisiejszy Hong Kong albo Nowy Jork: wielkie, kosmopolityczne, bogate miasto, nieszczędzące pieniędzy na naukę. Prawdopodobnie był Grekiem, obywatelem Rzymu. Swoje wcześniejsze dzieła dedykował Syrusowi, o którym wiadomo jeszcze mniej: może był to jego nauczyciel, a może kochanek.

2 myśli nt. „Zanim zaśniesz, pomyśl, jak wiele zawdzięczasz Ptolemeuszowi

  1. Mam pytanie astronomiczno-geometryczne. Czy w pracach Galileusza lub innych obserwatorów nieba pojawił się kiedyś problem sposobu oświetlenia Księżyca prze Słońce? To proste doświadczenie, które może wykonać każdy, np. idąc rano do pracy – Księżyc jest w trzeciej kwadrze, a więc jego blask ma kształt odwróconego D, znajduje się jeszcze dość wysoko na niebie, a Słońce dopiero wschodzi. Pomimo tego układu na nieboskłonie blask Księżyca jest zadarty do góry – gdyby poprowadzić linię prostą będącą osią symetrii kształtu tego blasku, powinna ta linia trafiać prosto w Słońce, jako źródło tego oświetlenia. I na pewno trafia, ale złudzenie optyczne jest niezwykłe, zdaje się przeczyć prostoliniowej drodze światła. Mam na to pewne wyjaśnienie, w którym posługuję się obrazowo torowiskiem kolejowym, ale interesują mnie obserwacje w przeszłości. Czy ktoś to opisał?

    Lubię

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s