George Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop?

Widziałem jakiś czas temu reklamę, a w niej na zdjęciu – rzekomo satelitarnym – rozpoznawalne twarze jakichś celebrytów. Czy to możliwe technicznie? Nie bardzo. Wprawdzie w sprawach techniki lepiej nie twierdzić, że coś jest niemożliwe, ale tutaj trudności są dość zasadnicze i wynikają z falowej natury światła.

Do wyjaśnienia sprawy przyczynił się Airy, wtedy niedługo po trzydziestce, profesor katedry Plume’a w Cambridge, a niebawem 7. Astronom Królewski, ten ostatni urząd pełnił niemal pół wieku. Wyróżniał się jako zdolny młodzieniec, zanim skończył siedemnaście lat, znał dziewięć rozdziałów Matematycznych zasad filozofii przyrody Isaaca Newtona, a więc materiał matematycznie nietrywialny. Dostał się na studia do Trinity College w Cambridge jako sizar, czyli coś w rodzaju studenta służącego, ponieważ miał talent do matematyki, łaciny oraz greki. Ze zdecydowanie najlepszym wynikiem zdał Tripos, egzamin matematyczny, który bardzo ceniono. Potem przez dwa lata był profesorem katedry Lucasa – tak jak kiedyś Newton. Katedra ta nie przynosiła jednak wówczas dochodów, płacono 99 funtów rocznie, podczas gdy Airy jako młodszy tutor zarabiał 150. Namówiono go jednak, aby się o nią ubiegał ze względów wizerunkowo-prestiżowych. Szczerze mówiąc, katedra podupadła, Airy był pierwszym liczącym się profesorem na niej od czasów Newtona. Kiedy poinformowano go, że profesor katedry Plume’a („astronomia i filozofia eksperymentalna”) czuje się niezbyt dobrze i zapewne długo nie pociągnie, Airy zaczął się starać o tę posadę. Zdobył ją, kiedy się zwolniła drogą naturalną, przy okazji wydębiając od uniwersytetu podwyżkę z 300 do 500 funtów. W ten sposób został astronomem, do jego obowiązków bowiem należało kierowanie obserwatorium uniwersyteckim. Airy potrzebował pieniędzy: studia dawały mu możliwość awansu, nie upierał się, że musi być uczonym, ale skoro los tak chciał, to nim został. Pragnął też się ożenić, do czego również potrzebował pieniędzy. Był niezwykle pracowity, dobrze zorganizowany, sumienny, nie wyrzucał żadnych papierów, zszywał je, tworząc do nich system odnośników. Codziennie tłumaczył jakiś kawałek z angielskiego na łacinę. Optyką zajął się jako nauką pomocniczą astronomii. Odkrył we własnym wzroku wadę, zwaną dziś astygmatyzmem i jako pierwszy starał się ją skorygować specjalnymi soczewkami. Ogłosił drukiem 518 krótszych prac oraz kilka książek. Nie był wielkim uczonym, ale sporo osiągnął. Nie wszyscy muszą być twórczy i mieć szalone pomysły, nauka do codziennego funkcjonowania potrzebuje ludzi pracowitych i kompetentnych.

W 1834 roku Airy przedstawił w Cambridge Philosophical Society pracę na temat ugięcia światła na kołowym otworze. Sam chyba nie rozumiał wówczas, że rozstrzygnął fundamentalny problem astronomii: jakie najmniejsze kąty można rozróżnić posługując się przyrządem optycznym o danej średnicy – jego wynik dotyczy oka ludzkiego, aparatów fotograficznych, teleskopów, mikroskopów itd. Airy urodził się mniej więcej wtedy, gdy Thomas Young zaproponował falową teorię światła. Została ona rozwinięta niezależnie przez Augustine’a Fresnela. Fale mogą ze sobą interferować, to znaczy, gdy do jakiegoś obszaru docierają np. dwie niezależne fale, zaobserwujemy ich sumę. Fala wyjściowa może być silniejsza (interferencja konstruktywna)

constructive

Może też wystąpić interferencja destruktywna, w szczególnym przypadku, wypadkowa może być równa zeru.

destructive

Na obu rysunkach fala niebieska jest sumą zielonej i czerwonej. Oba rysunki możemy traktować albo jako zrobione w funkcji czasu w jednym miejscu, albo jako migawkowe zdjęcia fali w przestrzeni w pewnym określonym momencie. Ponieważ fala to przesuwające się z pewną prędkością drganie, zależności przestrzenne można przełożyć na czasowe i odwrotnie.

Rozważmy najpierw dyfrakcję na wąskiej długiej szczelinie. Z lewej strony dociera fala płaska, za szczeliną rozchodzi się fala nieco rozmyta pod względem kierunku (powierzchnie falowe są prostopadłe do kierunku rozchodzenia się fali).

Wave_Diffraction_4Lambda_Slit

Wikipedia: Diffraction

Jakie będzie kątowe rozmycie fali ugiętej? Mamy do dyspozycji dwie wielkości: \lambda – długość fali oraz d. Można z nich utworzyć kąt w radianach, które są bezwymiarowe (iloraz długości luku i promienia): \lambda/d. Prawdopodobnie nasz kąt będzie w przybliżeniu równy temu ilorazowi z dokładnością do jakegoś czynnika czysto liczbowego (odwrotny iloraz nie zachowywałby się dobrze przy \lambda\rightarrow 0, gdy dyfrakcja powinna być niewidoczna; gdyby fale miały zerową długość, wystarczyłaby do wszystkiego optyka geometryczna i wyobrażanie sobie światła jako promieni).

Właśnie to rozmycie w kierunkach ogranicza zdolność rozdzielczą. Soczewka teleskopu czy oka nie zmienia tego faktu. Bez dyfrakcji działanie soczewki wyglądałoby tak:

Lens_and_wavefronts

Wikipedia: Lens

Jeśli kierunki za soczewką (otworem) są rozmyte, to obraz w ognisku nie będzie punktowy, lecz będzie stanowił plamkę. Dlatego w dalszym ciągu zostawiamy soczewki, ponieważ nie one są tu istotne, lecz rozważamy szczelinę – w tym zjawisku liczy się fakt, że soczewka jest otworem, a nie np. z czego jest wykonana itp. Żeby obliczyć falę docierającą do jakiegoś punktu, można posłużyć się zasadą Huygensa: każdy punkt czoła fali jest źródłem kulistych fal. Należy wszystkie te fale dodać do siebie, co w przypadku szerokiej szczeliny oznacza całkowanie, ale obejdziemy się bez niego. W  przejściu przez szczelinę źródłami fal są wszystkie jej punkty. Jeśli punkt obserwacji znajduje się daleko, to fale cząstkowe będą biegły praktycznie równolegle do siebie. W kierunku prostopadłym do czoła fali padającej (kąt \theta=0) wszystkie fale cząstkowe mają tak samo daleko, więc będą się dodawać konstruktywnie: na wprost naszej szczeliny pojawi się maksimum natężenia fali. Jeśli nasz punkt obserwacji będzie nieco z boku, jedne fale będą miały dalej, drugie bliżej, więc w wyniku interferencji powstanie fala o nieco mniejszej amplitudzie: składowe fale nieco się „rozjeżdżają”, nie wszystkie drgają w tej samej fazie. Dla jakiego kąta \theta pojawi się pierwsze minimum natężenia? Sytuację przedstawia rysunek.

destruktywna

Skrajne fale elementarne z dwóch końców szczeliny mają teraz różnicę odległości równą \lambda – czyli długość fali. Te skrajne fale będą się więc wzmacniać, co jednak z resztą? Możemy naszą szczelinę podzielić w myślach na połowy i rozpatrywać pary fal, jak na rysunku. Różnica odległości między nimi to dokładnie \frac{1}{2} \lambda, a więc będą interferować destruktywnie, dając w wyniku zerowe natężenie. Ponieważ dla każdej fali z górnej połówki szczeliny możemy znaleźć drugą w dolnej połówce, która ją unicestwi, więc w efekcie dostaniemy zero: minimum natężenia. Kąt, dla którego wystąpi owo minimum spełnia warunek widoczny z rysunku:

\sin\theta=\dfrac{\lambda}{d}.\mbox{ (*)}

Dla małych kątów sinus można zamienić kątem (w radianach; 2\pi \mbox{rd}=360^{\circ}). Mamy więc

\theta \approx\dfrac{\lambda}{d}.

Natężenie za szczeliną przedstawia wykres.

sincsquared

Pierwsze minimum występuje dla kątów spełniających warunek (*). Większa cześć światła pojawi się jako jasny środkowy prążek, obok którego wystąpią mniej jasne prążki poboczne. Kiedy możemy rozróżnić dwie fale przybiegające z lewej strony pod różnymi kątami? Za graniczną sytuację uważa się taką, jak poniżej: główne maksimum jednej fali przypada na minimum drugiej (to tzw. kryterium Rayleigha).

rayleigh

Co się zmieni, gdy zamiast szczeliny weźmiemy okrągły otwór. To zadanie w sam raz dla Senior Wranglera (zwycięzcy Tripos). Wynik nie wyraża się przez funkcje elementarne, lecz przez funkcje Bessela. Airy obliczył je numerycznie, co w tamtych czasach – bez Wolfram Alpha, Mathematiki, Sage’a itd. – było niewyobrażalnie pracochłonne, a dziś można to liczyć w przeglądarce. Obraz jakościowo się nie zmienił. Oczywiście, będzie miał symetrię osiową, teraz będziemy mieli środkową jasną plamkę (plamkę Airy’ego), otoczoną pierścieniami.

283px-Airy-pattern.svg

 

Wikipedia: Airy disk

Kąt do pierwszego minimum wynosi dokładnie

\sin\theta=1,22 \dfrac{\lambda}{d}.

Możemy teraz obliczyć zdolność rozdzielczą fotografii satelitarnych. Oznaczmy przez x długość najmniejszego obiektu, który chcemy rozróżnić; niech nasz satelita krąży na wysokości h, wówczas kąt \theta będzie równy

\theta=\dfrac{x}{h}.

Podstawiając h=500 \mbox{ km}, d=2,5 \mbox{ m} (więcej niż teleskop Hubble’a!) oraz biorąc długość fali żółtego swiatła \lambda=0,6 μm, otrzymujemy

x=1,22 \dfrac{\lambda h}{d}\approx 0, 15 \mbox{ m}

Obliczyliśmy mniej więcej graniczną wartość „piksela” na zdjęciu satelitarnym. Rzeczywiste rozmiary piksela obecnych satelitów cywilnych są kilkukrotnie większe. Nie ma mowy o rozróżnianiu twarzy. Problem stanowi średnica naszego obiektywu. Większe wartości niż kilka metrów są zdecydowanie niepraktyczne. Można posłużyć się np. dwoma mniejszymi obiektywami, które będą dość daleko od siebie, np. w odległości 10 m albo i dużo więcej, i łączyć ich obrazy. Astronomowie używają czegoś takiego, więc pewnie i wojskowi mogą. Wciąż jednak mało prawdopodobne, aby stosować sprzęt tego rodzaju do sfotografowania paru celebrytów, których można bez problemu sfotografować z odległości kilku metrów.

Dyfrakcyjne ograniczenie zdolności rozdzielczej jest problemem w pewnych sytuacjach, choć astronomowie na Ziemi większy kłopot mają z ruchami atmosfery, które poruszają obrazem i zamazują go przy dłuższej ekspozycji. Rozumiejąc zjawiska dyfrakcyjne, można częściowo oczyścić z nich obraz za pomocą odpowiednich procedur matematycznych, ale niełatwo osiągnąć jakąś zdecydowaną poprawę.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s