Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s