Albert Einstein, Szkic autobiograficzny (1955)

Latem 1954 roku redakcja pisma „Schweizerische Hochschulzeitung” („Gazeta szwajcarskich szkół wyższych”) zwróciła się do Einsteina z prośbą o wspomnienia dotyczące Politechniki Związkowej (ETH) w Zurychu. Miała ona bowiem w roku następnym obchodzić stulecie założenia, a uczony był bez wątpienia jej najsławniejszym absolwentem. Einstein wysłał rękopis 29 marca 1955 roku, dwa tygodnie później, 29 kwietnia zmarł wskutek krwotoku z aorty brzusznej (miał zdiagnozowanego parę lat wcześniej tętniaka). Był to jego ostatni dłuższy tekst. Poniżej zamieszczam przekład całości tego ciekawego tekstu (nieco ponad 2000 słów).

Przedtem trochę komentarza. Einstein traktował swoją pracę jako wkład w pewne obiektywne przedsięwzięcie i w związku z tym niezbyt interesował się okolicznościami historycznymi własnej pracy, nie czytał swoich biografii, sądził, że liczą się tylko trwałe wyniki, pewna logika rozwoju, a nie to, kto i jak je osiągnął. Jego zdaniem ambicja osobista jest fałszywym przewodnikiem w badaniach naukowych, twórca powinien niejako roztapiać się w swoim dziele. Podkreślał zawsze swój ograniczony talent do uczenia się i słabą pamięć, która mu przeszkadzała w byciu dobrym uczniem i później studentem. Nie jest to kokieteria, uczony zdawał sobie bowiem sprawę, jak łatwo zadowolić się powierzchownym zrozumieniem jakiegoś zagadnienia i jak trudno poza nie wykroczyć. Od samego początku był samoukiem i nawyk chodzenia własnymi drogami nigdy go nie opuścił. Nie należy oczywiście sądzić, że był jakimś prostaczkiem, który nie zna niezbędnego warsztatu badawczego, ale też nie należał do encyklopedystów, nie starał się wiedzieć wszystkiego i często niezbyt dobrze znał prace swoich poprzedników. Nie był też szczególnie sprawny w prowadzeniu trudnych rachunków, zapewne z ulgą przyjąłby istnienie programów takich jak Mathematica.

Szkic stał się okazją do przypomnienia jego współpracy z Marcelem Grossmannem (Więcej na ten temat można znaleźć w poście Marcel Grossmann, przyjaciel i współpracownik Einsteina). Einstein nie pamiętał czasem, by zamieścić wzmiankę o współpracownikach, w późniejszych wypowiedziach odnoszących się do powstania ogólnej teorii względności nie zawsze odnotowywał pomoc kolegów takich, jak Grossmann czy Michele Besso (o tym drugim nie wspomina i tutaj, por. Michele Angelo Besso, przyjaciel Einsteina). Nie doszukiwałbym się w tym jakichś złych intencji, z pewnością niczego nie ukrywał, prędzej przejawiał w ten sposób swego rodzaju niewrażliwość na kwestie personalne. Miał on w znacznym stopniu dar odsuwania od siebie wszelkich spraw egzystencjalnych, emocjonalnych i koncentrowania się na nauce, byłoby hipokryzją cenić jego osiągnięcia naukowe – skutek pewnej życiowej jednostronności, i jednocześnie mieć mu za złe, że nie był idealnym przyjacielem, mężem czy ojcem (co byśmy wtedy zrobili z tymi wszystkimi, którzy są kiepskimi mężami, ojcami i przyjaciółmi, a w dodatku brak im jakichkolwiek osiągnięć, nie mówiąc o takich na jego miarę?). Musimy też pamiętać, że ogólna teoria względności była w przeważającej mierze wynikiem jego indywidualnego zgłębiania podstaw fizyki i szukania lepszych zasad fundamentalnych. Jego najwybitniejsi koledzy, jak Planck, uważali tę pracę za swoiste dziwactwo, nie było w tej dziedzinie żadnego wyścigu. Wiadomo było, że przydałaby się nowocześniejsza teoria grawitacji, ale brak było nowych danych eksperymentalnych do wyjaśnienia oprócz niewielkiego, nie do końca wyjaśnionego ruchu peryhelium Merkurego. Toteż Einstein miał prawo czuć się autorem nowej teorii grawitacji.

Opisuje też Einstein w skrócie genezę ogólnej teorii względności. Pragnął, aby była ona uogólnieniem teorii szczególnej na ruchy przyspieszone. W szczególnej teorii równouprawnione są wszystkie układy inercjalne (czyli takie, w których obowiązuje I zasada dynamiki Newtona (zasada bezwładności): gdy nie działa siła, ruch ciała jest jednostajny i prostoliniowy). Jeśli spróbujemy sformułować fizykę w sposób słuszny także w układach nieinercjalnych (samochód na zakręcie, hamujacy pociąg itp.), musimy do bilansu sił doliczyć tzw. siły bezwładności, jak siła odśrodkowa albo siła Coriolisa (zakręcająca wiatry w wiry wokół centrum wyżu czy niżu). Siły bezwładności, zwane też czasami siłami pozornymi, występują tylko w układach nieinercjalnych, gdy upieramy się budować równania np. z punktu widzenia hamującego pociągu. Ich cechą szczególną jest to, że zawsze są proporcjonalne do masy, na którą działają. W fizyce mamy także jeszcze inne siły proporcjonalne do masy: grawitację. Chcąc więc dopuścić układy nieinercjalne, musimy je traktować łącznie z grawitacją, a nawet więcej: lokalnie nie można rozróżnić, ile jest w nich grawitacji, a ile sił bezwładności. Dlatego kwestia układów nieinercjalnych powiązana jest z grawitacją. Fakt, że masa w prawie grawitacji i masa w II zasadzie dynamiki są równe, potwierdzają eksperymenty – od czasu Galileusza i Newtona, który badał ruch specjalnie sporządzonego wahadła, żeby stwierdzić, czy na pewno nie zależy on od rodzaju materii, z jakiego owo wahadło jest zbudowane.

Droga do zbudowania teorii ogólnej była zawiła i pełna zakrętów. M.in. Einstein szukał równań, które będą słuszne w każdym układzie współrzędnych (także poruszających się i krzywoliniowych). Uwzględnienie grawitacji wymagało rezygnacji z geometrii euklidesowej na rzecz ogólniejszej geometrii Riemanna. Aby mieć pewność, że wyniki uzyskane w jednym układzie współrzędnych słuszne są także we wszystkich innych, można zastosować formalizm tensorowy rozwinięty m.in. przez Gregoria Ricciego-Curbastro i jego ucznia Tullia Levi-Civitę. Np. równania pola grawitacyjnego w pustej przestrzeni mają postać R_{ik}=0, gdzie R_{ik} (i,k=1,2,3,4) jest tzw. tensorem Ricciego, opisującym możliwą w tych warunkach krzywiznę (za krzywiznę odpowiada obiekt bardziej skomplikowany, tensor Riemanna R_{ijkl} i dopiero jego znikanie oznacza brak jakiegokolwiek pola grawitacyjnego, wiemy, że pole rozciąga się na obszary wolne od materii). Oba tensory wyrażają się przez metrykę g_{ik}, która tutaj odgrywa rolę podobną do potencjału w teorii Newtonowskiej. Formalizm matematyczny zapewnia, że jeżeli tensor Ricciego znika w jednym układzie współrzędnych, to znika także we wszystkich innych. Mamy więc formalizm ogólnie kowariantny, inaczej mówiąc słuszny w każdym układzie współrzędnych. Tyle matematyka, z którą zapoznali się Einstein i Grossmann.

Trudnością, która zatrzymała na dwa lata postępy pracy, był pozorna niezgodność formalizmu matematycznego z żądaniami natury fizycznej: teoria powinna w granicy słabych pól sprowadzać się do grawitacji Newtonowskiej, powinna też w niej obowiązywać zasada zachowania energii i pędu. Formalizm matematyczny wydawał się Einsteinowi niezgodny z tymi żądaniami fizycznymi. Wymyślił nawet tzw. argument z dziury (the Hole Argument), który przemawiać miał za równaniami mniej ogólnymi. Ostatecznie równania okazały się jednak ogólnie kowariantne. Uczony sądził, że zrównuje w ten sposób między sobą przyspieszone układy współrzędnych, podobnie jak w szczególnej teorii zrównane są wszystkie inercjalne układy odniesienia. Na tym miało polegać przejście od teorii szczególnej do ogólnej (tak np. przedstawia tę kwestię Leopold Infeld w Ewolucji fizyki, pisanej przy pewnym udziale Einsteina). Nie do końca miał rację, można bowiem także teorię Newtonowską sformułować w sposób ogólnie kowariantny, co zrobił Élie Cartan w latach dwudziestych ubiegłego wieku. W ogóle Einstein zarówno w podczas tworzenia teorii ogólnej, jak i później, na etapie odkrywania jej konsekwencji, popełnił mnóstwo błędów i żywił wiele błędnych przekonań. Nie umniejsza to jego wielkości naukowej, raczej przypomina, że był człowiekiem i nie zawsze miał rację. Wielkość uczonego polega raczej na tym, że w jakiejś kwestii, większej czy mniejszej, miał on ostatecznie rację albo przynajmniej wskazał dobry kierunek innym, a nie że zawsze i w każdym przypadku był natchnioną wyrocznią. Choć sam Einstein nie miał cierpliwości do roztrząsania własnych błędów, historycy prześledzili zawiły bieg myśli uczonego (a także wkład jego kolegów i adwersarzy) w czasie pracy nad ogólną teorią względności. Napiszę może o tym kiedyś o tym w sposób nietechniczny.

Zainteresowanych nieco szerszym, lecz popularnym ujęciem tematu odsyłam do postu Istota teorii względności. Wersję bardziej zmatematyzowaną znaleźć można w poście Teoria grawitacji Einsteina względności w kwadrans. Nieco trudniejszy jest post Dlaczego grawitacja wiąże się z krzywizną czasoprzestrzeni?

Warto też zwrócić uwagę, z jaką pokorą pisze Einstein o następnych czterdziestu latach swej pracy. Jej celem było uogólnienie teorii grawitacji obejmujące elektrodynamikę. Uczony miał nadzieję, że nieliniowa teoria pola dostarczy nowego spojrzenia na cząstki w fizyce: staną się one zlokalizowanymi konfiguracjami pola. W rezultacie przewyciężony będzie dualizm cząstek i pól, a może także pojawi się możliwość „zrozumienia” mechaniki kwantowej. Więcej o tym w poście Einstein i jednolita teoria pola: zmarnowane trzydzieści lat? Uczony nie wspomina nawet o swoich pracach kwantowych, choć były one niezmiernie ważne w historii i należałaby mu się za nie nie jedna Nagroda Nobla (którą otrzymał), ale przynajmniej jeszcze jedna (za kondensację Bosego-Einsteina). Zapewne z perspektywy czasu owe prace kwantowe wydały mu się mniej ważne, ponieważ później przesłonięte zostały mechaniką kwantową, stając się w ten sposób zaledwie wstępem do czegoś, a nie kompletnym osiągnięciem. Taki jest wszakże los najlepszych prac: inni budują na nich nowe konstrukcje. Pozostałe prace zostają gdzieś z boku, na stronach historycznych czasopism. Czasami, bardzo rzadko, zdarza im się przebudzenie po latach, jak było w przypadku kondensacji Bosego-Einsteina, która przez ostatnie ćwierć wieku rozrosła się w nową dziedzinę badań.

Warto też zwrócić uwagę na refleksje Einsteina na temat szkoły i edukacji: czy wybieramy model pruski, oparty na drylu, czy może liberalny model szwajcarski. Czy chcemy kształcić kaprali, czy obywateli.

Szkic autobiograficzny

Redaktorzy tego jubileuszowego wydania poprosili mnie łaskawie, bym wniósł do niego swój wkład. Na początku nie wiedziałem, jak się do tego zabrać i odpowiedziałem zakłopotanym milczeniem. Kiedy jednak spostrzegłem, że nie da się  od tego wymówić z gracją, poddałem się. Ponieważ nie czułem się na siłach napisać na temat Politechniki Związkowej niczego wartego przeczytania o charakterze obiektywnym, jedynym wyjściem było opowiedzenie o moich osobistych doświadczeniach, które były w jakiś sposób związane z Politechniką. Przede wszystkim konieczne było tu przezwyciężenie wewnętrznego oporu, który wiąże się z psychologią zawodową naukowca zajmującego się naukami ścisłymi. Choć i on, podobnie jak wszyscy inni przedstawiciele gatunku, eufemistycznie określającego się mianem Homo sapiens, nie jest bynajmniej wolny od próżności, to niechętnie pisze o sobie. Jego wykształcenie i działalność naukowa ograniczają go do przedmiotów obiektywnych i uchwytnych pojęciowo.

Umyślnie grzeszę przeciwko tej dobroczynnej i wyzwalającej praktyce. Ale nie grzeszę bez planu i w sposób nieumiarkowany. Nawet bowiem dla czytelnika o obiektywnym nastawieniu może być interesujące, co postawiło jednostkę na jej drodze i zmusiło ją do rozwoju w pewien szczególny sposób. Ten grzech daje mi również miłą okazję do przypomnienia niektórych postaci, którym wiele zawdzięczam.

Rok 1895: w wieku szesnastu lat przyjechałem do Zurychu z Włoch. Poprzedni rok spędziłem przy rodzicach w Mediolanie bez szkoły i bez nauczycieli. Moim celem było dostanie się na Politechnikę, choć nie miałem jasnego wyobrażenia, jak to osiągnąć. Byłem upartym, lecz skromnym młodym człowiekiem, który elementy stosownej wiedzy zdobył głównie dzięki samokształceniu. Pragnąłem głębszego zrozumienia, nie miałem jednak talentu do przyswajania wiedzy, na przeszkodzie stała też moja kiepska pamięć, toteż studia nie wydawały mi się bynajmniej łatwym zadaniem. Z poczuciem uzasadnionej niepewności zapisałem się na egzamin wstępny na Wydziale Inżynierskim. Egzamin ten obnażył boleśnie braki mojego wykształcenia, mimo że egzaminatorzy byli cierpliwi i pełni wyrozumiałości. Porażkę odczuwałem jako w pełni zasłużoną, pocieszeniem mógł być fakt, że fizyk, H.F. Weber, poinformował mnie, że gdybym został w Zurychu, mogę uczęszczać na jego wykłady. Jednak rektor, profesor Albin Herzog zarekomendował mnie do szkoły kantonalnej w Aarau, gdzie po rocznej nauce uzyskałem maturę. Szkoła ta wywarła na mnie niezapomniane wrażenie swym liberalnym duchem i pełną powagi prostotą nauczycieli, którzy polegali na swoim własnym osądzie zamiast zewnętrznych autorytetów. Porównanie z trwającą sześć lat nauką w niemieckim gimnazjum, rządzonym w sposób autorytarny, przekonało mnie, jak bardzo edukacja zachęcająca do swobodnego działania i brania odpowiedzialności góruje nad wychowaniem opartym na wojskowym drylu, narzuconych autorytetach i osobistych ambicjach. Autentyczna demokracja nie jest czczą iluzją.

Podczas tego roku w Aarau przyszło mi do głowy następujące pytanie: gdyby poruszać się razem z falą świetlną z prędkością światła, to widziałoby się pofalowane pole niezależne od czasu. Wydaje się jednak, że coś takiego nie istnieje! To był pierwszy, młodzieńczy eksperyment myślowy mający związek z teorią względności. Pomysł nie jest wytworem logicznego myślenia, nawet jeśli produkt końcowy związany jest z jakąś strukturą logiczną

Lata 1896-1900, studia na Wydziale Nauczycielskim Politechniki Związkowej. Szybko zdałem sobie sprawę, iż muszę się zadowolić tym, że będę przeciętnym studentem. Bo żeby być dobrym studentem, trzeba mieć łatwość pojmowania; wolę, aby skoncentrować siły na wszystkim, co jest wykładane; a także upodobanie do porządku, żeby robić notatki z wykładów i potem je sumiennie opracowywać. Wszystkich tych cech stanowczo mi brakowało, jak to sobie z przykrością uświadomiłem. Toteż stopniowo nauczyłem się żyć z nie całkiem czystym sumieniem i tak ukierunkowywać studia, by odpowiadały moim możliwościom intelektualnym oraz zainteresowaniom. Niektóre wykłady śledziłem z napiętą uwagą. Z innych jednak „wagarowałem”, w domu studiując ze świętym zapałem mistrzów fizyki teoretycznej. Było to dobre samo w sobie, a także służyło do uciszenia wyrzutów sumienia tak skutecznie, że uniknąłem wszelkich poważniejszych zaburzeń emocjonalnych. Wróciłem do swego dawnego zwyczaju długich sesji prywatnych studiów, w czym towarzyszyła mi serbska studentka Mileva Marić, którą potem poślubiłem. Jednocześnie pracowałem gorliwie i z zapałem w laboratorium fizycznym profesora H.F. Webera. Fascynowały mnie także wykłady geometrii różniczkowej profesora Geisera, które były prawdziwym dziełem sztuki w swoim rodzaju i okazały się niezmiernie pomocne później, kiedy zmagałem się z ogólną teorią względności. Oprócz tego jednak wyższa matematyka nie cieszyła się na ogół moim zainteresowaniem podczas studiów. Błędnie sądziłem, iż jest ona dziedziną tak rozgałęzioną, że łatwo można zużyć całą swoją energię w jakiejś jej odległej prowincji. W swej niewinności mniemałem, że fizykowi wystarczy jasne pojmowanie elementarnych pojęć matematycznych i umiejętność ich stosowania, a cała reszta składa się z jałowych subtelności, bezużytecznych dla fizyka – pożałowania godny błąd, z którego zdałem sobie sprawę dopiero później. Najwyraźniej mój talent matematyczny nie był wystarczający, by odróżnić to, co centralne i podstawowe od rzeczy peryferyjnych bez większego znaczenia.

Podczas tych lat studiów zaprzyjaźniłem się blisko z kolegą ze studiów, Marcelem Grossmannem. Spotykaliśmy się co tydzień o stałej porze w Café Metropol na Limmatquai i rozmawialiśmy nie tylko na temat studiów, lecz o wszystkim, co może interesować młodych ludzi z otwartą głową. W odróżnieniu ode mnie nie był on typem wagabundy ani samotnika, lecz kimś kto będąc zakotwiczonym w szwajcarskim środowisku, nie stracił przy tym swej wewnętrznej niezależności. Prócz tego obdarzony był szczodrze tymi właśnie talentami, których mnie brakowało: łatwością pojmowania i porządkowania pod każdym względem. Nie tylko chodził na wszystkie przepisane wykłady, ale także opracowywał je w tak doskonały sposób, że jego zeszyty nadawałyby się do druku. Gdy trzeba było przygotować się do egzaminu, użyczał mi swoich notatek, które stawały się moją ostatnią deską ratunku. Wolę nie spekulować, jak bez nich potoczyłyby się moje studia.

Nawet jednak z jego nieocenioną pomocą i mimo tego, że wszystkie poruszane na wykładach tematy były interesujące same przez się, ciągle musiałem walczyć ze swą niechęcią do solidnego opanowania tych wszystkich rzeczy. Studia wyższe niekoniecznie mają dobry wpływ na refleksyjnych ludzi mojego pokroju. Przymus zjedzenia tak wielu dobrych rzeczy może trwale zepsuć apetyt i żołądek. Ognik świętej ciekawości może zagasnąć na zawsze. Na szczęście ta intelektualna depresja trwała u mnie zaledwie rok po pomyślnym ukończeniu studiów.

Największą przysługę oddał mi jednak Marcel Grossmann jako przyjaciel, gdy niemal rok po ukończeniu przez mnie studiów polecił mnie z pomocą swego ojca dyrektorowi Friedrichowi Hallerowi ze Szwajcarskiego Urzędu Patentowego, który nosił wtedy nazwę „Urzędu własności intelektualnej”. Po gruntownym egzaminie ustnym pan [Friedrich] Haller mnie zatrudnił. Dzięki temu w najbardziej twórczych latach 1902–1909 mogłem być wolny od trosk życiowych. W dodatku praca nad ostatecznym sformułowaniem patentów technicznych okazała się dla mnie prawdziwym błogosławieństwem, zmuszając do wielotorowego myślenia i dostarczając też ważnych impulsów do rozmyślań o fizyce. W ogóle zawód praktyczny jest błogosławieństwem dla ludzi mojego pokroju. Gdyż kariera akademicka stawia młodego człowieka w sytuacji przymusowej – musi on w dużych ilościach produkować prace naukowe, co rodzi pokusę powierzchowności, której oprzeć się potrafią tylko najsilniejsze charaktery. Większość zawodów praktycznych jest także tego rodzaju, że człowiek o przeciętnych zdolnościach może wykonać to, czego się od niego oczekuje. Jego miszczańska egzystencja nie zależy od jakiejś szczególnej inspiracji. Jeśli ma jakieś głębsze zainteresowania naukowe, może poza swoją obowiązkową pracą zatapiać się w ulubionym problemie. Nie musi się dręczyć obawami, że jego wysiłki mogą nie przynieść rezultatów. To, że znalazłem się w takim szczęśliwym położeniu, zawdzięczam Marcelowi Grossmannowi.

Spośród przeżyć naukowych owych szczęśliwych lat w Bernie wymienię w szczególności jedno, które okazało się najbardziej owocną myślą mego życia. Szczególna teoria względności liczyła już sobie wtedy parę lat. Problem polegał na tym, czy zasada względności ograniczona jest do układów inercjalnyych, tzn. układów współrzędnych poruszających się względem siebie ruchem jednostajnym prostoliniowym (liniowe transformacje współrzędnych). Na poziomie formalnym nasuwa się instynktownie odpowiedź: „Prawdopodobnie nie!” Jednakże fundamentem każdej mechaniki do tamtej pory była zasada bezwładności, co zdawało się wykluczać jakiekolwiek rozszerzenie zasady względności. W istocie, jeśli wprowadzimy przyspieszony (względem układu inercjalnego) układ współrzędnych, to „odizolowany” punkt materialny nie porusza się już względem niego ruchem jednostajnym prostoliniowym. W tym miejscu umysł nieskrępowany utartymi koleinami myślowymi zadałby pytanie: „Czy ruch tego typu pozwala mi odróżnić w jakiś sposób układ inercjalny od nieinercjalnego?”. I musiałby on następnie dojść do wniosku, że tak nie jest (przynajmniej w przypadku przyspieszenia o stałej wartości i kierunku). Gdyż zachowanie mechaniczne ciał względem takiego przyspieszonego układu współrzędnych można także uznać za skutek pola grawitacyjnego. Jest to możliwe dzięki eksperymentalnemu faktowi, że w polu grawitacyjnym przyspieszenie dowolnego ciała jest zawsze takie samo. To spostrzeżenie (zasada równoważności) nie tylko uprawdopodobniało, że prawa natury muszą mieć postać niezmienniczą (AE używa określenia: inwariantne) względem grupy transformacji współrzędnych ogólniejszej niż grupa Lorentza (rozszerzenie zasady względności), ale także iż takie rozszerzenie doprowadzi do pogłębionej teorii grawitacji. Nie miałem najmniejszej wątpliwości, że myśl ta musi być słuszna co do zasady. Jednak trudności w jej przeprowadzeniu wydawały się prawie nie do pokonania. Począwszy od tego, że elementarne rozważania pokazywały, iż przejście do szerszej grupy transformacji jest nie do pogodzenia z bezpośrednią interpretacją fizyczną współrzędnych czasoprzestrzennych, która przygotowała grunt pod szczególną teorię względności. Co więcej, z początku trudno było dostrzec, jak należy wybrać poszerzoną grupę transformacji. W istocie doszedłem do zasady równoważności drogą okrężną, na której relacjonowanie nie ma tu miejsca.

W latach 1902-1912, gdy nauczałem fizyki teoretycznej na uniwersytetach w Zurychu i w Pradze, wciąż rozważałem ten problem. W roku 1912, gdy zostałem powołany na Politechnikę w Zurychu, zbliżyłem się znacznie do jego rozwiązania. Istotna okazała się tu przeprowadzona przez Hermanna Minkowskiego analiza formalnych podstaw szczególnej teorii względności. Można ją podsumować jednym zdaniem: przestrzeń czterowymiarowa posiada (inwariantną) metrykę pseudoeuklidesową; fakt ten określa zarówno sprawdzalne doświadczalnie własności metryczne przestrzeni, jak też zasadę bezwładności, a także postać równań kowariantnych (AE: inwariantnych) względem transformacji Lorentza. W przestrzeni tej istnieją wyróżnione, kwazikartezjańskie układy współrzędnych, jedyne, jakie są tu „naturalne” (układy inercjalne).

Zasada równoważności skłania nas do wprowadzenia w takiej przestrzeni nieliniowych transformacji współrzędnych, tzn. współrzędnych niekartezjańskich (krzywoliniowych). Metryka pseudoeuklidesowa przyjmuje przy tym postać ogólną:

ds^2=\Sigma g_{ik}dx_{i}dx_{k},

wysumowaną po wskaźnikach i,k (od 1 do 4). Owe g_{ik} są wówczas funkcjami czterech współrzędnych, które w myśl zasady równoważności oprócz metryki opisują także „pole grawitacyjne”. To ostatnie ma pewną szczególną własność, można je bowiem przetransformować do szczególnej postaci

-dx_1^2-dx_2^2-dx_3^2+dx_4^2,

tzn. postaci, w której funkcje nie zależą od współrzędnych. W takim przypadku transformacja pozwala się „pozbyć” pola grawitacyjnego opisywanego przez g_{ik}. W tej drugiej, szczególnej postaci ruch bezwładny masywnego i izolowanego ciała opisany jest za pomocą (czasopodobnej) linii prostej. W postaci ogólnej odpowiada mu „krzywa geodezyjna”.

Powyższe sformułowanie nadal odnosiło się tylko do przypadku przestrzeni pseudoeuklidesowej. Pokazało jednak wyraźnie, jak osiągnąć przejście do pól grawitacyjnych o charakterze ogólnym. Także w tym przypadku pole grawitacyjne można opisać pewnym rodzajem metryki, to znaczy symetrycznym polem tensorowym g_{ik}. Uogólnienie polega po prostu na tym, iż odrzucamy założenie, że pole to można przekształcić w pole pseudoeuklidesowe za pomocą zwykłej transformacji współrzędnych.

Problem grawitacji został więc zredukowany do czysto matematycznego. Czy istnieją równania różniczkowe dla , które są kowariantne (niezmienicze) wobec nieliniowych przekształceń współrzędnych? Takie i tylko takie równania różniczkowe należało brać pod uwagę jako równania pola grawitacyjnego. Prawo ruchu punktu materialnego jest wówczas równaniem linii geodezyjnej.

Z takim zadaniem w głowie udałem się w 1912 roku do mojego starego przyjaciela ze studiów, Marcela Grossmanna, który do tej pory został już profesorem matematyki na Politechnice Związkowej. Natychmiast się zapalił, chociaż jako prawdziwy matematyk miał do fizyki stosunek nieco sceptyczny. W naszych studenckich czasach, gdy mieliśmy zwyczaj wymieniać myśli przy kawie, zrobił kiedyś tak ładną i charakterystyczną uwagę, że nie mogę się powstrzymać od zacytowania jej tutaj: „Przyznaję, że z nauki fizyki odniosłem jednak autentyczną korzyść. Wcześniej, kiedy siadałem na krześle jeszcze trochę ciepłym od osoby siedzącej przede mną, czułem się odrobinę nieswojo. Teraz zupełnie mi to minęło, gdyż dowiedziałem się z fizyki, że ciepło jest czymś zupełnie bezosobowym”.

Teraz gotów był z radością współpracować ze mną nad tym problemem, ale z zastrzeżeniem, że nie będzie odpowiedzialny za jakiekolwiek twierdzenia czy interpretacje natury fizycznej. Przejrzał literaturę i wkrótce odkrył, że wskazany problem matematyczny został już rozwiązany, głównie przez Riemanna, Ricciego i Levi-Civitę. Osiągnięcia te wiązały się z Gaussa teorią krzywizny powierzchni, w której po raz pierwszy stosowane były w sposób systematyczny współrzędne uogólnione. Najwięcej dokonał Riemann. Pokazał, jak z pola tensorowego można tworzyć tensory przez różniczkowanie kowariantne drugiego rzędu. Można było stąd wywnioskować, jak powinny wyglądać równania pola grawitacyjnego – jeśli zażądamy kowariantności (inwariantności) względem grupy wszystkich ciągłych przekształceń współrzędnych. Nie było jednak łatwo zrozumieć, iż żądanie to jest uzasadnione, tym bardziej że sądziłem, iż znalazłem przeciwko niemu argumenty. Zastrzeżenia te, choć błędne, sprawiły, że teoria w ostatecznej formie pojawiła się dopiero w 1916 roku.

Gdy pracowałem pilnie z moim starym przyjacielem, żaden z nas nie przypuszczał, że podstępna choroba wyniszczy wkrótce tego wspaniałego człowieka. Pragnienie, by choć raz w życiu wyrazić wdzięczność Marcelowi Grossmannowi, dodało mi odwagi do napisania tego nieco bezładnego szkicu autobiograficznego.

Od ukończenia teorii grawitacji minęło czterdzieści lat. Poświęcone były one niemal wyłącznie próbom uogólnienia teorii pola grawitacyjnego i uzyskania teorii pola, która mogłaby stanowić podstawę całej fizyki. Wielu dążyło do tego samego celu. W tym czasie próbowałem kilku pozornie obiecujących podejść, które potem zarzuciłem. Ostatnie dziesięć lat doprowadziło w końcu do teorii, która wydaje mi się naturalna i obiecująca. Ale do tej pory nie jestem w stanie przekonać sam siebie, czy powinienem uważać tę teorię za wartościową dla fizyki, czy też nie. Wynika to przede wszystkim z trudności matematycznych niemożliwych na razie do pokonania, pojawiają się one zresztą w każdej nieliniowej teorii pola. W dodatku wydaje się raczej wątpliwe, czy teoria pola może prawidłowo opisać atomistyczną strukturę materii i promieniowania, jak też zjawiska kwantowe. Większość fizyków bez wahania odpowiedziałaby: „nie”, ponieważ wierzą oni, że problem kwantowy został w zasadzie rozwiązany w inny sposób. Tak czy inaczej, możemy się pocieszać zdaniem Lessinga, że pogoń za prawdą cenniejsza jest niż jej bezpieczne posiadanie.

Marcel Grossmann – przyjaciel i współpracownik Einsteina

Było ich pięcioro w Sekcji VIA Politechniki w Zurychu (obecna ETH) – „matematycy”: Marcel Grossmann, Jakob Ehrat i Louis Kollros oraz „fizycy”: Albert Einstein i Mileva Marić. Sekcja VIA była wydziałem ogólnym Politechniki, przygotowującym przyszłych nauczycieli matematyki i fizyki. Uczyli się oni (w nieco odmiennych proporcjach) matematyki i fizyki, tylko podgrupa „fizyków” miała praktyczne zajęcia laboratoryjne. Politechnika w Zurychu (obok paryskiej Sorbony) przyjmowała na studia kobiety, należąc pod tym względem do nielicznych wyjątków w Europie. Dlatego Mileva Marić, uzdolniona Serbka z Wojwodiny, trafiła tam na studia. Mileva została z czasem żoną Alberta, Marcel należał do jego najbliższych przyjaciół. Wzorowo prowadzone notatki Grossmanna z wykładów służyły Albertowi pomocą przed egzaminami, Einstein był bowiem studentem niezbyt sumiennym, czytał prace wielkich fizyków na własną rękę i zajmował się tym, co mu się akurat wydawało interesujące, a nie tym, co wynikało akurat z programu studiów. Nie miał w szczególności zbyt wiele zapału do tych części matematyki, które wydawały się oderwane od zastosowań w fizyce. Stracił na tym zapewne, ponieważ wśród wykładowców matematyki na Politechnice byli uczeni tak wybitni jak Adolf Hurwitz i Hermann Minkowski. Nie orientował się wówczas – podobnie jak większość jego profesorów – że w przyszłości aparat matematyczny fizyki bardzo się powiększy.

W lipcu 1900 roku wszyscy oni, oprócz Milevy, uzyskali dyplom Politechniki. Grossmann i Kollros zostali dość szybko profesorami tej uczelni, Einstein natomiast nie mógł przez długi czas znaleźć pracy. Pisał do Grossmanna z domu rodziców we Włoszech:

Drogi Marcelu! Gdy wczoraj znalazłem twój list, byłem wzruszony wiernością i życzliwością, które nie pozwoliły ci zapomnieć o starym przyjacielu pechowcu. Niełatwo byłoby znaleźć lepszych przyjaciół niż ty i [Jakob] Ehrat. Nie muszę chyba mówić, że byłbym szczęśliwy, mogąc zająć się tak piękną sferą aktywności, i że dołożyłbym starań, by nie zawieść okazanego mi zaufania. Już od trzech tygodni jestem u rodziców i stąd usiłuję zdobyć posadę asystenta na jakimkolwiek uniwersytecie. Już dawno bym uzyskał posadę, gdyby nie intrygi Webera. Pomimo to staram się nie przeoczyć żadnej okazji i nie tracę humoru. Bóg stworzył osła i dał mu grubą skórę.
Mamy tu prześliczną wiosnę i cały świat uśmiecha się tak radośnie, że siłą rzeczy trzeba odrzucić wszelką hipochondrię. Poza tym moi muzyczni znajomi chronią mnie od zgorzknienia.
Co się tyczy nauki – przyszło mi do głowy parę pięknych pomysłów, ale muszą one jeszcze dojrzeć. (14 IV 1901)

Dzięki ojcu Grossmanna, który znał dyrektora Biura Patentowego w Bernie, Friedricha Hallera, Einstein trafił do niego na rozmowę kwalifikacyjną i został przyjęty do pracy jako ekspert techniczny III klasy. Było to w czerwcu 1902 roku, po dwóch latach niepewności i braku stabilizacji finansowej. Einstein przez całe życie wdzięczny był Grossmannowi za pomoc w tym trudnym momencie.

W roku 1912 Marcel Grossmann już jako profesor ETH zaproponował Einsteinowi profesurę na tej uczelni. Sytuacja była już zupełnie inna: Einstein był najwybitniejszym fizykiem Europy, a więc i świata, jego prace z teorii względności, fizyki statystycznej, fizyki kwantowej zasługiwały już nie na jedną, lecz na kilka Nagród Nobla. Teraz to ETH miała zyskać sławnego uczonego, Einstein zgodził się, ponieważ w Pradze, gdzie przebywał, nie czuł się zbyt dobrze, a Mileva była zupełnie osamotniona. Einstein pracował intensywnie nad teorią grawitacji. Miał wtedy ponoć zwrócić się do swego kolegi słowami: „Grossmann, pomóż mi, bo inaczej zwariuję”.

Pracowali wspólnie w ciągu niecałych dwóch lat, jakie spędził Einstein w Zurychu. Opublikowali dwie wspólne prace. Pierwsza z nich, tzw. Entwurf, była chybionym zarysem teorii grawitacji. To Grossmann skierował uwagę Einsteina na geometrię różniczkową Levi-Civity i Ricciego-Curbastro. Fizycy zawdzięczają Grossmannowi określenie tensor (samo pojęcie było znane). Praca Entwurf składała się z dwóch części: fizycznej autorstwa Einsteina oraz matematycznej autorstwa Grossmanna. Grossmann zaprezentował w swej części zarys geometrii różniczkowej znanej w tamtym momencie w sposób jednolity i do pewnego stopnia autorski. Nie była to matematyka, którą Grossmann uprawiał naukowo ani przedtem, ani później. Jego specjalnością była geometria wykreślna oraz konstrukcje geometryczne w geometrii nieeuklidesowej. Jak się wydaje, sam wolał się dystansować od odpowiedzialności za prezentowaną teorię fizyczną. Czy jego pomoc ograniczała się wyłącznie do kwestii technicznych? I tak, i nie. Brał on udział w obliczeniach, część z nich znajduje się w tzw. Notatniku z Zurychu, analizowanym szczegółowo przez historyków. Podejście czysto matematyczne nie doprowadziło do sukcesu. Teoria przedstawiona w Enwurf jest nieelegancka i nieprawdziwa fizycznie (co nie od razu było jasne). Potęga formalizmu geometrii różniczkowej nie była wykorzystana w pełni, obaj, jak się zdaje, nie doceniali jej wtedy. Grossmann nie interesował się zbytnio dalszym losem teorii grawitacji, w każdym razie ich współpraca skończyła się w sposób naturalny w roku 1914. Einstein wyjechał do Berlina, aby objąć najbardziej prestiżowe stanowisko w Niemczech, stworzone specjalnie dla niego: miał być członkiem Pruskiej Akademii Nauk otrzymującym wysoką pensję bez żadnych zobowiązań dydaktycznych. Max Planck i Walther Nernst, którzy mu tę posadę zaproponowali, liczyli, że Berlin utrzyma dzięki temu pozycję najważniejszego centrum fizyki w Niemczech. Silną konkurencją było Monachium, gdzie pracował Arnold Sommerfeld, a później także Getynga, w czasach Maksa Borna i Jamesa Francka. Marcel Grossmann nie pracował wiele naukowo, zajął się uczeniem matematyki oraz organizacją. Ich synowie chodzili potem do jednej klasy gimnazjalnej w Zurychu (Mileva zamieszkała tam po rozstaniu z Albertem.

Einstein dopiero w roku 1915 spostrzegł, że teoria Entwurf nie jest tym, o czym myślał. Chodziło o to, że nie dało się jej zastosować w układzie obracającym się. Tymczasem jedną z głównych idei „uogólnionej” czy „ogólnej” teorii względności było dopuszczenie dowolnych układów współrzędnych. Dzięki pracy poprzednich lat mógł teraz Einstein szybko wrócić do niedokończonych obliczeń i części układanki szybko się domknęły. A właściwie kolejno domykały w listopadzie 1915 roku. Przez cztery tygodnie opublikował wtedy Einstein cztery kolejne prace (był to rytm posiedzeń Akademii Nauk), przy czym każda następna zmieniała nieco wyniki poprzedniej. Powstał zamęt, w którym tylko sam Einstein umiał się odnaleźć. Toteż w roku 1916 napisał dużą pracę podsumowującą wyniki.

Był to największy sukces naukowy Einsteina, choć dopiero po latach stało się jasne, jak znakomitą i świetnie zgadzającą się z doświadczeniami teorię stworzył. Nie ulega też kwestii, że nikt inny wtedy by jej nie zbudował. Grossmann bardzo tu Einsteinowi pomógł, kierując go we właściwą z matematycznego punktu widzenia stronę. Był jednak w tę pracę zaangażowany w mniejszym chyba stopniu niż Besso, który brał udział w obliczeniach obrotu peryhelium Merkurego. Einstein nie miał nigdy współpracownika, który dorównywałby mu intelektualnie. Być może zresztą uczeni mający silne osobowości nie bardzo dają się zaprzęgnąć do pracy zespołowej czy nawet partnerskiej, mają bowiem wyraźnie sprecyzowane cele i własne wyobrażenie drogi do nich.

Michele Angelo Besso, przyjaciel Einsteina

Historia zna wiele przypadków, kiedy tylko pesymiści mieli rację, a radosna większość beztrosko podążała ku zgubie. W roku 1936 większość Niemców zadowolona była z kanclerza Hitlera, który podniósł kraj z kolan i zlikwidował bezrobocie. Prawie nikt oprócz przeciwników reżimu nie myślał o nieuniknionym smutnym końcu tego państwa. Einstein, obserwując sytuację w Europie, pisał z Ameryki do Bessa:

Sprawy ludzkie w naszych czasach mniej niż kiedykolwiek napawają radością, by nie wspomnieć o tych głupcach z Niemiec. Teraz okazuje się w końcu, jak proroczym umysłem był prof. Winteler, który tak wcześnie rozpoznał całą powagę tego zagrożenia [Fölsing, s. 55].

Znali się z Bessem wówczas niemal czterdzieści lat i choć nie mieli się już nigdy spotkać osobiście, pisali do siebie regularnie. Albert Einstein miał dar zaprzyjaźniania się z ludźmi, i to na całe życie. Jedna z najdłuższych znajomości wiązała go z Michele Angelo Besso, starszym o sześć lat inżynierem budowy maszyn po Politechnice w Zurychu (późniejszej ETH). Poznali się na wieczorku muzycznym w salonie państwa Hüni, właścicieli sklepu muzycznego w Zurychu, obaj bowiem grali na skrzypcach. Czytając o ludziach z końca XIX wieku, ma się wrażenie, że niemal wszyscy muzykowali, a w każdym razie bywali na różnych domowych wydarzeniach muzycznych. Łączyło to ludzi w różnym wieku, różnych zawodów i upodobań. Osiemnastoletni Einstein kończył już zapewne pierwszy rok studiów na kierunku nauczycielskim tej samej uczelni. Można sądzić, że zbliżyło ich także i to, że uczyli się u tych samych profesorów fizyki: Heinricha Webera i Johanna Perneta i matematyki: Adolfa Hurwitza i Karla Geisera. Besso uzyskiwał zresztą lepsze stopnie niż Einstein, który chodził swoimi drogami, szybko przestał cenić wiedzę przekazywaną na uczelni i niezbyt się przykładał, zwłaszcza do matematyki. Besso zawdzięczał też Einsteinowi i owym wieczorkom muzycznym znajomość ze swą przyszłą żoną Anne Winteler.

Rodzina Wintelerów stała się wspólnym ogniwem łączącym ich życie. Einstein trafił do domu Josta i Pauline Winteler w Aarau w roku 1895 po oblanych egzaminach na Politechnikę. W tamtejszej szkole kantonalnej uzupełniać miał wiedzę z potrzebnych przedmiotów, mieszkając na stancji u Wintelerów. Jost Winteler, językoznawca, autor nowatorskiej dysertacji na temat jednego ze szwajcarskich dialektów, filolog, ornitolog i poeta, należał do grona nauczycielskiego szkoły. Jego żona Pauline szybko stała się dla Alberta kimś bliskim, niemalże drugą matką. Wintelerowie mieli też siódemkę dzieci, od najstarszej Anne, przez Josta Fridolina, Rosę, Marie, Mathiasa, Josta juniora do Paula. Swój pierwszy romans przeżył Albert z Marie Winteler. Odsunął się jednak od niej, kiedy podczas studiów poznał Milevę Marić, swą późniejszą żonę. Marie mocno to przeżyła i związki Alberta z Wintelerami przejściowo osłabły. Po kilku latach Marie wyszła za mąż za dyrektora fabryki zegarków. Wiadomo, że w późniejszych latach ich romans odżył w sekrecie. Kilka lat po Albercie również jego siostra, Maja, mieszkała przez czas nauki u Wintelerów i wyszła potem za mąż za najmłodszego ich syna Paula.

Rodzina Wintelerów: od lewej Marie, Maja Einstein, Paul, Anna, rodzice: Jost i Pauline, Rosa

Jost Winteler kultywował staroświecki liberalizm, ideały republikańskie, kształcił swoje dzieci (także córki), niechętnie myślał o niemieckim szowinizmie, który znał jeszcze swe swych studiów w Jenie i który docierał aż do Szwajcarii. Einstein zawdzięczał Jostowi wiele swych poglądów na świat polityki i historii. Podobne liberalne poglądy żywił Alfred Stern, profesor historii, u którego Albert bywał jako student na obiadach. Besso uczęszczał na jeden z jego wykładów. Szwajcarskie środowisko młodego Einsteina nie przywiązywało wagi do narodowości. Einstein dopiero w Berlinie wiele lat później poczuł się Żydem.

Jeszcze innym elementem łączącym Bessa i Alberta oraz Maję Einsteinów były Włochy. Besso, urodzony pod Zurychem, pochodził z rodziny wywodzącej się z Triestu. Mówił równie swobodnie po włosku i po niemiecku, znał też francuski i angielski. Rodzice Einsteinów mieszkali wówczas we Włoszech, więc Albert kursował między Pawią a Zurychem. Choć uczony nie znał dobrze włoskiego, lubił ten język i w korespondencji z Tulio Levi-Civitą podczas pierwszej wojny światowej, nalegał, by matematyk pisał do niego w swoim języku (odpowiadał mu jednak po niemiecku). Besso także w pewnych okresach życia mieszkał we Włoszech. We Florencji spędzili wiele lat Maja Einstein (doktor filologii romańskiej) z Paulem: ona usiłowała prowadzić pensjonat, on malował obrazy.

Namiętnością Bessa była wiedza. Przez całe życie, aż do późnej starości, pochłaniał książki, uczęszczał na wykłady, robił notatki, należał do towarzystw naukowych. Zajmował się przy tym dziedzinami tak różnymi, jak filozofia, neurofizjologia, polityka, psychologia, prawo przemysłowe, literatura angielska, różne dziedziny fizyki i matematyki. I nie były to zainteresowania powierzchowne: Besso chodził na wykłady takich uczonych, jak Einstein czy Hermann Weyl i był ich aktywnym uczestnikiem, zadającym pytania i starającym się zrozumieć różne kwestie. Przez kilka lat Albert i Michele pracowali razem w Urzędzie Patentowym w Bernie. To Einstein ściągnął tam przyjaciela, często razem wracali do domu, dyskutując nad zagadnieniami fizyki. Besso jest jedyną osobą, którą Einstein wymienia z wdzięcznością w swoim epokowym artykule na temat teorii względności.

Przyjaciele współpracowali też w czerwcu 1913 roku, gdy Besso (mieszkający wtedy w Gorycji) odwiedził Einsteina w Zurychu. Uczony ukończył wtedy ważną pracę wspólnie z Marcelem Grossmannem, w której podał równania pola grawitacyjnego. Była to tzw. teoria Entwurf (co znaczy tyle co zarys). Einstein przekonał wówczas sam siebie, iż jest to prawidłowa teoria. Nie była ona szczególnie elegancka, ale w końcu nikt nie powiedział, że równania fizyki muszą koniecznie być eleganckie. Mają prawidłowo opisywać zjawiska, i to wszystko. Kłopot w tym, że nie było zbyt wielu zjawisk możliwych wtedy do wykrycia. Inaczej mówiąc, stara teoria Newtona nawet po przeszło dwóch wiekach trzymała się dobrze. Czemu więc w ogóle ulepszać coś, co okazało się dobre? Einstein był fizykiem dobrze „słyszącym” pojęcia i wychwytującym świetnie wszelki fałsz i brak harmonii. To go zaprowadziło do szczególnej teorii względności. Ale szczególna teoria względności była niekompatybilna z grawitacją. Potrzebna była teoria traktująca grawitację jako pole, analogiczne do pola elektrycznego i magnetycznego. Do tego punktu Einstein nie był sam – wielu innych próbowało w tych latach zbudować teorię grawitacji jako pola. Einstein miał jednak inny punkt wyjścia: grawitacja, podobnie jak bezwładność, mierzona jest masą. Właściwie są to dwa różne pojęcia masy: można osobno mierzyć masę grawitacyjną i osobno bezwładną. Okazuje się, że są one równe. Z punktu widzenia teorii był to swoisty „cud”, arbitralne założenie, dodane, by opisać rzeczywistość. Toteż Einstein pracował nad teorią, w której bezwładność i grawitacja będą wymienne, a to zaprowadziło go do przestrzeni zakrzywionych i szukania pomocy u Marcela Grossmanna, matematyka i przyjaciela ze studiów.

Istniał niewielki efekt, którego astronomom nie udawało się wyjaśnić: orbita Merkurego, w pierwszym przybliżeniu eliptyczna, obraca się powoli. Większość tego obrotu (równego 570’’) wyjaśnić można przyciąganiem innych planet, pozostawała jednak niewielka różnica 41 sekund kątowych na stulecie. Zauważył to jeszcze w połowie XIX wieku Urbain Le Verrier i po półwieczu analiz różnica ta nadal się utrzymywała i nikt nie miał dobrego pomysłu na jej wyjaśnienie. Chwytano się pomysłów rozpaczliwych, np., że wykładnik w prawie grawitacji różni się troszeczkę od dwóch albo że są jakieś niewidoczne obłoki materii blisko Słońca, które wpływają na ruch Merkurego. Mając teorię Entwurf Einstein chciał sprawdzić, czy uda się za jej pomocą wyjaśnić obrót peryhelium Merkurego. Zachował się rękopis (Einstein Papers, t. 4, doc. 14), w którym obaj przyjaciele obliczali ową wielkość obrotu peryhelium. Jest on świadectwem, że w osobie Bessa Einstein miał nie tylko interlokutora, ale i do pewnego stopnia kolegę. Niewykluczone też, że uczony chciał wciągnąć w ten sposób Bessa do pracy naukowej i zachęcić do przeprowadzenia dalszych rozważań, które można by opublikować. Wielkość efektu, którą uzyskali równa była 1821’’, czyli około pół stopnia na stulecie. Musieli jednak później zdać sobie sprawę z błędu w rachunkach: wstawili do obliczeń przez pomyłkę sto razy za dużą masę Słońca. Efekt ów był naprawdę równy 18’’ na stulecie. Czyli nadal źle, ale w końcu nie było żadnej pewności, czy w ogóle owe 41’’ uda się wyjaśnić za pomocą innej teorii grawitacji. Astronomowie mogli się gdzieś po drodze pomylić albo nie wziąć pod uwagę jakichś istotnych faktów. Inne teorie grawitacji z tego okresu nie radziły sobie lepiej. Besso wrócił wkrótce do Włoch, zabierając ze sobą obliczenia. W następnym roku obliczenia podobne do Einsteina i Bessa opublikował Johannes Droste, holenderski nauczyciel matematyki, który później napisał doktorat poświęcony ogólnej teorii względności. Besso nigdy nie zrobił doktoratu, może czuł, że aktywna praca naukowa nie jest dla niego. W tamtych czasach nie było zresztą łatwo o płatną posadę naukową i często nawet wybitni uczeni musieli przez wiele lat zarabiać w inny sposób. Jak się zdaje, Besso nie był w dostatecznym stopniu skoncentrowany na jednym, interesowało go wiele rzeczy, a przy tym brakowało mu uporu, aby zmagać się z jednym zagadnieniem przez długi czas. Ludzie tacy jak Besso nie osiągają zaszczytnych stanowisk, choć może to dzięki nim świat wydaje się nieco lepszy. Einstein lubił idealistów, nawet dziwaków, niezwykle wysoko cenił też zawsze inteligencję Bessa, a przecież z biegiem lat poznał najwybitniejsze umysły epoki. Kiedy już obaj byli starzy, napisał przyjacielowi: „Nadal wierzę, że gdybyś był w większym stopniu monomaniakiem, mógłbyś osiągnąć coś naukowo wartościowego. Motyl nie jest kretem, ale żaden motyl nie pownien tego żałować” [6 I 1948].

Ostatecznie teoria Entwurf okazała się fałszywa, co Einstein zauważył dopiero we wrześniu 1915 roku. Jednak obliczenia przeprowadzone w roku 1913 wraz Michele Besso okazały się niezwykle pomocne, gdy w listopadzie sformułował nowe równania pola i powtórzył rachunki dla peryhelium Merkurego – tym razem dały one prawidłowy rezultat. Było to, jak Einstein później twierdził, jego najsilniejsze przeżycie naukowe: teoria zbudowana tak, by uzyskać większą przejrzystość pojęć, w oderwaniu od bezpośrednich danych eksperymentalnych, dała oto prawidłowy rezultat dla efektu znanego i niewyjaśnionego od dawna. A więc składając ze sobą starannie i uważnie idee oderwane, można wyjrzeć z platońskiej jaskini i lepiej zrozumieć ruch planet.

Później Besso, który znał także Milevę, służył często jako pośrednik w jej trudnych kontaktach z Einsteinem, czy nawet jako swego rodzaju zastępczy ojciec dla jego synów. Po I wojnie światowej zamieszkał znowu w Szwajcarii znajdował się więc znacznie bliżej dawnej rodziny Einsteina. Uczony żywił dużo szacunku dla moralnej postawy Bessa, ale chwilami trudno im się było porozumieć, zwłaszcza podczas bolesnego i wieloletniego konfliktu Alberta z Milevą zakończonego rozwodem. Ona walczyła zażarcie o pieniądze i pełne decydowanie o życiu synów. Jak się zdaje, w obu kwestiach osiągnęłaby to samo, nie stawiając spraw na ostrzu noża. Einstein chciał być dobrym ojcem i nie był też skąpy. Zapewne to urażona duma i zawiedziona miłość Milevy stały się główną przeszkodą w negocjacjach.

Besso, namawiany wielokrotnie do napisania biografii przyjaciela, miał na tyle dużo taktu, aby tego nie robić, choć postać Einsteina gwarantowała finansowy sukces przedsięwzięcia. Po dojściu Hitlera do władzy Einstein wyjechał na stałe do Stanów Zjednoczonych i nawet po wojnie nie odwiedził Europy, szczególnie unikając kontaktów z Niemcami. Besso mieszkał w Bernie, potem w Genewie. Na początku roku 1955 Einstein dowiedział się o śmierci przyjaciela. Odpisał wtedy jego synowi (któremu kiedyś zbudował pierwszego latawca), podkreślając harmonię życia zmarłego, jego udane życie rodzinne, którego sam nie osiągnął, a także jego niezawodny zmysł moralny.

Teraz znowu, raz jeszcze, wyprzedził mnie, żegnając ten dziwny świat. To nie ma żadnego znaczenia. Dla nas, wierzących fizyków, podział na przeszłość, teraźniejszość i przyszłość jest jedynie iluzją, nawet jeśli mocno zakorzenioną [A. Einstein do Vero i Bice Besso, 15 III 1955].

Rękopis Einsteina-Bessa znajduje się w Einstein Papers, t. 4.