Dlaczego grawitacja wiąże się z krzywizną czasoprzestrzeni?

  • Przeniesienie równoległe

Wyobraźmy sobie najpierw powierzchnię zanurzoną w przestrzeni euklidesowej. Załóżmy, że określiliśmy na niej pewne współrzędne x=(x^1, \ldots, x^n) . Położenie punktu powierzchni możemy więc zapisać jako \vec{r}=\vec{r}(x^i) . Pochodne tego wektora po współrzędnych, utworzą zbiór wektorów stycznych do naszej powierzchni:

\vec{e}_j=\dfrac{\partial \vec{r}}{\partial x^j}.

Dowolny wektor styczny do powierzchni w danym punkcie można przedstawić jako kombinację liniową \vec{e}_j:

\vec{v}=v^j \vec{e}_j,

gdzie sumujemy po powtarzającej się parze wskaźników: górnym i dolnym. Jest to tzw. konwencja Einsteina, uczony mówił żartobliwie, że stanowi ona jego największe odkrycie matematyczne. W geometrii ważną rolę odgrywa równoległość: wiemy, co znaczy, że dwa wektory w przestrzeni euklidesowej są równoległe. Można koncepcję równoległości przenieść na nieskończenie bliskie wektory na zakrzywionej powierzchni. W przestrzeni euklidesowej nasz wektor \vec{v} ma pozostać stały, co oznacza, że

\delta\vec{v}=0=\delta v^j \vec{e}_j+v_j \delta \vec{e}_j.

W drugim wyrazie uwzględniliśmy, że nasza baza względem przestrzeni euklidesowej może się obracać. Zmiana każdego z wektorów bazy powinna być równa:

\delta\vec{e}_j=\dfrac{\partial \vec{r}}{\partial x^j \partial x^i }\delta x^i\stackrel{.}{=}{\Gamma}^k_{ij}\delta x^i \vec{e}_k.

Ostatnia równość \stackrel{.}{=} to w istocie rzut wektora z lewej strony na płaszczyznę styczną, pomijamy więc tę część wektora, która „wystaje” z powierzchni. Podstawiając to do warunku równoległości, otrzymujemy

\delta v^k=-\Gamma_{ij}^k v^i \delta x^j. \mbox{ (*)}

Oznacza to, że współrzędne wektora równoległego nieco się zmienią i zmianę tę opisują współczynniki \Gamma , zwane uczenie koneksją afiniczną. Znając funkcje koneksji, możemy dokonać przesunięcia równoległego wektora. Jeśli rozpatrzymy pewną krzywą x^j=x^j(\tau) (gdzie \tau jest czasem własnym), pochodne współrzędnych utworzą wektor prędkości styczny do toru:

v^k=\dfrac{d x^k}{d\tau}.

Najprostszym fizycznie ruchem będzie przesunięcie równoległe tego wektora wzdłuż krzywej (linii świata):

\delta \left(\dfrac{d x^k}{d\tau}\right)=-\Gamma_{ij}^k v^i \delta x^k,

skąd otrzymujemy równanie geodezyjnej:

\dfrac{{d\,}^2 x^k}{d\tau^2}+\Gamma_{ij}^k \,\dfrac{d x^i}{d\tau}\,\dfrac{d x^j}{d\tau}=0. \mbox{ (**)}

Jest to warunek na przeniesienie równoległe wektora prędkości wzdłuż krzywej, a więc coś najbliższego ruchowi jednostajnemu i prostoliniowemu z I zasady dynamiki.

Możemy teraz zapomnieć o przestrzeni euklidesowej i rozpatrywać przestrzeń, w której określone są współczynniki koneksji. Mamy wówczas krzywe geodezyjne – coś najbardziej zbliżonego do linii prostej. W teorii względności krzywe geodezyjne opisują ruch cząstki pod działaniem pola grawitacyjnego. Jak widać współczynniki koneksji komplikują równania ruchu i można je uważać za składowe pola grawitacyjnego, czy dokładniej grawitacyjno–bezwładnościowego. Kiedy współczynniki koneksji znikają, wracamy do ruchu prostoliniowego i szczególnej teorii względności (tzn. nie ma pola grawitacyjnego).

Równania geodezyjnej mogą więc nieść informację o polu grawitacyjnym. Zgodnie z zasadą równoważności nic tu nie zależy od masy poruszającej się cząstki. Okazuje się, że można za pomocą koneksji opisać grawitację także w mechanice klasycznej (zrobił to É. Cartan, już znając teorię Einsteina). Automatycznie opisujemy też siły bezwładności. Z punktu widzenia fizyka wcale nie jest dziwne, że w równaniu geodezyjnej mamy aż dwie prędkości: powinniśmy bowiem w tym formalizmie otrzymać zarówno siły Coriolisa liniowe w prędkości, jak i siły odśrodkowe, kwadratowe w prędkości. Z punktu widzenia zasady równoważności nie możemy lokalnie rozstrzygnąć, czy w naszym przypadku mamy do czynienia z polem grawitacyjnym, czy siłami bezwładności.

  • Krzywizna

Koneksja pozwala nam przenosić wektory równolegle wzdłuż krzywej. Wynik takiego przesuniecia może więc zależeć od kształtu krzywej. Aby zobaczyć, jak to działa, rozpatrzmy przesunięcie równoległe wektora v^i po infinitezymalnym zamkniętym równoległoboku geodezyjnych: po drodze x, x+\delta a, x+\delta a+\delta b, x+\delta b, x. Łączna zmiana wektora dana jest wyrażeniem:

\delta v^i=-\Gamma_{kj}^i(x) v^k(x) \delta a^j-\Gamma_{kj}^i(x+\delta a) v^k(x+\delta a) \delta b^j\\ \\ +\Gamma_{kj}^i(x+\delta b) v^k(x+\delta b) \delta a^j+\Gamma_{kj}^i(x) v^k(x) \delta b^j.

Można to wszystko zapisać w postaci:

\delta v^i=R^i_{kjl} v^k \delta b^j \delta a^l, \mbox{(***)}

gdzie R^i_{kjl} nazywa się tensorem krzywizny Riemanna i wyraża wzorem:

R^i_{kjl}=\Gamma^i_{lk,j}-\Gamma^i_{jk,l}+\Gamma^i_{jm}\Gamma^m_{kl}-\Gamma^i_{lm}\Gamma^m_{kl}.

W ostatnim wyrażeniu przecinki przed indeksem oznaczają różniczkowanie po odpowiedniej współrzędnej: A_{,i}\equiv\frac{\partial}{\partial x^i}. Przestrzeń jest zakrzywiona wtedy i tylko wtedy, gdy tensor krzywizny jest różny od zera. (Wektory i tensory transformują się w odpowiedni sposób przy zmianie układu współrzędnych, tak że znikanie w jednym układzie oznacza znikanie we wszystkich.) Koneksja jest zatem nietrywialna, gdy tensor krzywizny znika. Równanie (***) można zilustrować poglądowo: zmiana wektora proporcjonalna jest tu do pola powierzchni równoległoboku. Ponieważ każdą powierzchnię możemy rozbić na takie równoległoboki, więc łączna zmiana wektora w przesunięciu równoległym po zamkniętej pętli powinna być związana z krzywizną oraz polem powierzchni pętli. W przypadku sfery krzywizna jest stała i kąt obrotu wektora jest proporcjonalny do pola powierzchni pętli. W teorii względności pojawienie się krzywizny oznacza, że mamy nietrywialne pole grawitacyjne.

Tensor krzywizny ma wiele symetrii, które sprawiają, że ma nieco mniej niezależnych składowych, niż to wygląda na pierwszy rzut oka. W przypadku dwuwymiarowej powierzchni ma tylko jedną składową, w czterowymiarowej – dwadzieścia.

Klasycznym zastosowaniem przeniesienia równoległego jest wahadło Foucaulta.

  • Równanie dewiacji geodezyjnej

Brzmi to okropnie, nieco bardziej logiczne jest określenie: dewiacja linii geodezyjnych. Chodzi o to, co dzieje się wzdłuż pobliskich linii geodezyjnych. Możemy sobie wyobrazić dwie cząstki pyłu, które znajdują się nieskończenie blisko siebie w chwili początkowej. Obserwujemy, jak bedzie się zachowywać z czasem ich odległość mierzona różnicami współrzędnych. Zakladamy, że rozsądnie zaczynamy liczyć czas, tak żeby ułatwić porównanie dwóch ruchów.

Równanie dewiacji ma następującą postać:

\dfrac{D^2 \eta^i}{D\tau^2}=R^i_{jkl}\,\dfrac{dx^j}{d\tau}\,\dfrac{dx^k}{d\tau}\,\eta^l.

Różniczkowanie po lewej stronie oznacza pochodną po czasie własnym obliczoną jednak z uwzględnieniem przeniesienia równoległego. Nie możemy bowiem porównywać w przestrzeni zakrzywionej wektorów w dwóch różnych punktach przestrzeni, najpierw należy przenieść jeden z nich do punktu zaczepienia drugiego. Różnicę wektora wzdłuż krzywej wynikającą z jego zmiany: \frac{d\eta^i}{d\tau}d\tau należy poprawić, odejmując zmianę wynikającą z przesunięcia (*), łącznie otrzymamy

\dfrac{D\eta^i}{D\tau}=\dfrac{d\eta^i}{d\tau}+\Gamma^i_{jk}\,\dfrac{dx^j}{d\tau}\,\eta^k.

Jest to tzw. pochodna absolutna wzdłuż krzywej. Używając tego zapisu, możemy równanie geodezyjnej (**) zapisać w postaci

\dfrac{D}{D\tau}\dfrac{dx^i}{d\tau}=0.

Pochodna absolutna znika, gdy współrzędne wektora zmieniają się jedynie za sprawą przesunięcia równoległego, czyli w sensie fizycznym można powiedzieć, że się nasz wektor nie zmienia – przenosi się jedynie równolegle wzdłuż krzywej.

  • Równania pola Einsteina

Warto zauważyć, że do tej pory nie mówiliśmy nic o metryce naszej przestrzeni. W szczególnej teorii względności mamy naturalną miarę odległości dwóch zdarzeń w czasoprzestrzeni:

ds^2=dt^2-dx^2-dy^2-dz^2.

(Przyjmujemy c=1.) W zakrzywionej czasoprzestrzeni ogólnej teorii względności możemy zawsze wprowadzić taki układ współrzędnych, w którym interwał ds^2 przyjmie powyższą postać w danym punkcie. Nie można natomiast zwykle zrobić tego globalnie. Interwał czasoprzestrzenny ogólnie biorąc określa tensor metryczny g_{\mu\nu}. Podaje on przepis na obliczenie interwału za pomocą danych współrzędnych (gdy zmienimy współrzędne, postać metryki też się odpowiednio zmieni):

ds^2=g_{\mu\nu}dx^{\mu}dx^{\nu}.

Tutaj wskaźniki \mu,\nu=0,1,2,3. Mamy tu 10 niezależnych wartości (symetryczna macierz 4×4). Z matematycznego punktu widzenia koneksja i metryka to dwie różne struktury. Można je uzgodnić i tak jest w ogólnej teorii względności. Koneksja oraz tensor krzywizny wyrażają się przez metrykę. Lokalnie, w danym punkcie, nie tylko metryka może przybrać wartości znane ze szczególnej teorii względności, ale także współczynniki koneksji mogą znikać. Nie ma natomiast takiej transformacji współrzędnych, która sprowadza tensor Riemanna do zera, jeśli był niezerowy w innym układzie współrzędnych. Tensor Riemanna zawiera pierwsze i drugie pochodne metryki. Geodezyjne możemy też zdefiniować jako krzywe najkrótszej/najdłuższej długości, i są to wówczas te same geodezyjne co zdefiniowane wyżej.

Z fizycznego punktu widzenia metryka przypomina potencjał, a współczynniki koneksji – siły. Jaką postać moze mieć równanie pola w teorii Einsteina? Źródłem pola grawitacyjnego są masy, a u Einsteina także pędy i energie. Dla zbioru cząstek opisu dostarcza symetryczny tensor energii pędu: T_{\mu\nu}. Potrzebujemy więc jakiegoś tensora krzywizny o dwóch wskaźnikach. Taką wielkością jest tensor Ricciego zdefiniowany jako

R_{\mu\nu}=R^{\lambda}_{\mu\lambda\nu},

(sumowanie po wskaźnku \lambda). Można więc oczekiwać równania typu

R_{\mu\nu}=\kappa T_{\mu\nu}.

I jest to prawie dobre równanie, należy tylko zmodyfikować w nim lekko lewą stronę. Rzecz w tym, że tensor energii pędu powinien być zachowany, a lewa strona, tensor Ricciego nie spełnia tego warunku. Należy zastąpić go więc tensorem Einsteina:

G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=\kappa T_{\mu\nu},

gdzie R to skalar Ricciego: R=g^{\mu\nu}R_{\mu\nu} (g^{\mu\nu} jest macierzą odwrotną do g_{\mu\nu}. Jest to subtelność techniczna, na którą natrafił Einstein w listopadzie 1915 roku: 11 listopada proponuje pierwszą wersję, a 25 listopada tę niższą, już prawidłową. Ostatnie równanie można też przepisać w równoważnej postaci:

R_{\mu\nu}=\kappa (T_{\mu\nu}-\frac{1}{2}g_{\mu\nu}T^{\lambda}_{\lambda}).

W dalszym ciągu przyda nam się składowa 00 tego równania, w najprostszej sytuacji spoczywającej materii tylko składowa 00 tensora energii pędu jest różna od zera i równa jest gęstości materii \varrho. Otrzymamy wówczas

R_{00}=\kappa (T_{00}-\frac{1}{2}T_{00})=\frac{1}{2}\kappa T_{00}=\frac{1}{2}\kappa \varrho.

Aby znaleźć stałą \kappa, należy skorzystać z równań dla grawitacji Newtonowskiej, która powinna być przypadkiem granicznym.

W tym celu wyobraźmy sobie równanie dewiacji zastosowane do dwóch swobodnie spadających cząstek. Zakładamy, że w chwili początkowej \tau=0 obie spoczywają względem siebie. Wybieramy układ współrzędnych związany z cząstką centralną (względem której obliczana jest dewiacja). W takim układzie odniesienia czas własny i czas t są tym samym. Dla wskaźników przestrzennych i=1,2,3 równanie dewiacji sprowadza się do

\dfrac{d^2\eta^i}{dt^2}=R^{i}_{00l}\eta^l=-R^i_{0l0}\eta^l.

Skorzystaliśmy z faktu, że nasza cząstka centralna spoczywa: \frac{dx^\mu}{dt}=(1,0,0,0). W drugiej równości zmieniliśmy znak wraz z przestawieniem pary ostatnich wskaźników w tensorze Riemanna. Wynik ten obowiązuje dla trzech przyspieszeń wzdłuż trzech osi kartezjańskich. Załóżmy, że mamy kulę pyłu o promieniu r, początkowo nieruchomą, której środek obraliśmy za początek wektora \eta. Objętość kuli to

V=\dfrac{4\pi}{3}r_x r_y r_z,

gdzie zaznaczyliśmy, że wzdłuż trzech osi kartezjańskich promienie mogą się zmieniać niezależnie (przekształcając kulę w elipsoidę). Obliczając drugą pochodną objętości w chwili t=0 (pamiętamy, że pierwsze pochodne znikają), otrzymujemy:

\dfrac{\ddot{V}}{V}=\dfrac{\ddot{r}_x}{r_x}+\dfrac{\ddot{r}_y}{r_y}+\dfrac{\ddot{r}_z}{r_z}=-R_{00}.

W ostatniej równości, skorzystaliśmy z faktu, że R^0_{000}=0 – można więc sumowanie po wskaźnikach przestrzennych rozszerzyć o wskaźnik czasowy. Możemy tę samą wielkość obliczyć z Newtonowskiego prawa ciążenia. Przyspieszenie grawitacyjne na powierzchni kuli pyłu o masie M równe jest

g=\dfrac{GM}{r^2},

Wobec tego druga pochodna objętości spełnia równanie

\dfrac{\ddot{V}}{V}=-3\dfrac{g}{r}=-4\pi G \varrho.

gdzie \varrho to gęstość naszej kuli (&). Zatem szukana stała równa jest \kappa=8\pi G. Równanie Einsteina powinno mieć zatem postać.

G_{\mu\nu}=8\pi G T_{\mu\nu}.

Podsumowując, w roku 1915 Albert Einstein (podobnie zresztą jak najlepsi ówcześni matematycy) nie rozumiał dokładnie roli tensora Ricciego i nie widział, że równania pola są praktycznie wyznaczone przez kilka dość prostych warunków matematycznych. Oczywiście, nie są to jedyne możliwe matematycznie równania, ale jak pokazują przykłady późniejszych teorii grawitacji (a było ich przez sto lat sporo), równania Einsteina są najprostsze i jak dotąd potwierdzane są przez obserwacje. Kiedy później uczony zrozumiał, że w gruncie rzeczy można by dojść do teorii grawitacji drogą matematyczną, zaczął wyżej cenić osiągnięcia czystej matematyki. Stało się to poniekąd źródłem jego późniejszych niepowodzeń przy konstrukcji jednolitej teorii pola: z braku danych fizycznych szukał bowiem drogi matematycznej. Skonczyło się na dość jałowych próbach, które nie wzbogaciły zbytnio ani matematyki, ani fizyki.

(&) Nie jest to całkiem ścisłe rozumowanie, ponieważ milcząco założyliśmy, że nie ma innej materii niż kula pyłowa. Naprawdę należałoby obliczyć strumień pola grawitacyjnego przez powierzchnię kuli (on już zależy wyłącznie od tego, co znajduje się wewnątrz kuli), a potem skorzystać z tw. Gaussa-Ostrogradskiego i obliczyć dywergencję pola grawitacyjnego w punkcie centralnym. Tę wartość można porównać z tym, co wynika z równania dewiacji geodezyjnej. Oczywiście wynik jest taki sam.

Nie rozwijałem tu kwestii, czym są tensory. W największym skrócie są to obiekty niezależne od wyboru współrzędnych, podobnie jak trójwymiarowe wektory (które są szczególnym jednowskaźnikowym typem tensora). W teorii Einsteina dopuszczamy praktycznie wszelkie gładkie transformacje współrzędnych (ogólna kowariantność). Równania prawidłowo zapisane w ten sosób automatycznie słuszne będą w każdym układzie współrzędnych. Einstein wrócił do tensorów już w trakcie swej „rewolucji listopadowej” – kiedy co tydzień publikował nową pracę na temat teorii grawitacji, przy okazji modyfikując albo zmieniając poprzednie. Ten dziwny tryb publikowania wiązał się z tym, że w Getyndze David Hilbert, jeden z czołowych matematyków świata, także pracował nad podobną teorią. Einsteinowi groziło, że po siedmiu latach pracy zostanie prześcignięty, by tak rzec na ostatnich metrach przed finiszem. Nigdy później (ani wcześniej) nie publikował tak gorączkowo. Starał się też zazwyczaj wykazywać bardziej olimpijski spokój, co oczywiście było znacznie łatwiejsze, kiedy się było autorem epokowej teorii.

Gdyby ktoś chciał szczegółowo przejść obliczenia tensora krzywizny i równania dewiacji, może znaleźć je np. tutaj, na stronie Alana Heavensa s. 22-24.

Interpretacja tensora Ricciego za pomocą objętości kul opisana jest np. w pracy Johna C. Baeza i Emory’ego F. Bunna.

1 komentarz do “Dlaczego grawitacja wiąże się z krzywizną czasoprzestrzeni?

  1. Dziękuję za ten tekst. Ma Pan wyjątkową umiejętność pisania o rzeczach bardzo skomplikowanych w przystępny sposób. W każdym razie wydaje mi się , że zaczynam rozumieć o co chodzi w tych koneksjach , tensorach krzywizny Riemanna itp.

    Polubienie

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s