Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.

 

 

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s