Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.

Reklamy

Co to znaczy być wielkim człowiekiem? Przypadek Alberta Einsteina

John G. Kemeny, matematyk, późniejszy współtwórca języka BASIC, był przez rok asystentem Einsteina. Miał 22 lata, kończył właśnie doktorat z podstaw matematyki u Alonzo Churcha w Princeton, i zgłosił się do Einsteina, zapewne wcześniej ktoś go polecił jako zdolnego młodego człowieka. Einstein kazał sobie ze szczegółami opowiedzieć, czego dotyczyła praca Kemeny’ego. Młody człowiek protestował, że nie chce zawracać mu głowy, ale Einstein nalegał. Przez pół godziny rozmawiali o pracy Kemeny’ego, po czym Einstein rzekł: „To teraz ja panu opowiem o mojej pracy”. I tak się zaczęła ich współpraca. Scena ta jest wielce charakterystyczna dla Einsteina, który zawsze wszystkich traktował jednakowo, lekce sobie ważąc atrybuty społecznego prestiżu: stanowiska, urzędy, bogactwo, specjalne stroje, uroczyste ceremonie. Kiedy dziennikarze nie dawali mu spokoju z okazji którychś urodzin, stwierdził, że takie uroczystości są dla dzieci.

Był niezwykle sławny, żaden uczony przed nim nie był postacią tak bardzo rozpoznawalną. Oczywiście, duży udział miały w tym media, które w tym okresie zaczęły posługiwać się obrazem. Dziennikarze robili sensację z tego, że ukończył nową pracę, jak i z tego, że nie nosi skarpetek. Skąd jednak brała się niezmienna i autentyczna fascynacja szerokiej publiczności jego osobą? Większość czytelników prasy niewiele przecież rozumiała z naukowych osiągnięć Einsteina. Wiadomo było tylko, że dotyczą spraw fundamentalnych: pojmowania przestrzeni, czasu, rozchodzenia się światła, wszechświata jako całości. Jego odkrycia sięgały naszych elementarnych pojęć, wydawały się paradoksalne: czas może inaczej płynąć dla różnych obserwatorów, przestrzeń może być nieograniczona, lecz skończona, a każde dwie linie proste gdzieś się przecinają, światło jest przyciągane przez Słońce. Niewątpliwie pobudzało to wyobraźnię, zmieniało sposób widzenia świata, nawet jeśli się nie było naukowcem.

Jednak publiczny wizerunek Einsteina nie ograniczał się do nauki. Był jeszcze Einstein – persona publiczna, człowiek prosty w obejściu, bezpośredni, obdarzony poczuciem humoru, ciepły. Zabierał głos w sprawach, które wydawały mu się ważne: sprzeciwiał się bezmyślnemu hurrapatriotyzmowi niemieckiemu podczas I wojny światowej, po wojnie zabiegał o to, by jego rodaków nie traktować z niewspółmierną surowością. Gdy z Europy wschodniej, w tym z Polski, napływać zaczęli żydowscy uchodźcy, Einstein domagał się dobrego ich traktowania. Prowadził nawet osobny wykład, na który owi Ostjuden mogli uczęszczać, uniwersytet bowiem stawiał przeszkody formalne. Ze wschodniej Europy wywodziło się zresztą świetne grono żydowskich matematyków i fizyków, którzy w większości trafili później do Stanów Zjednoczonych. Einstein dopiero w okresie po I wojnie zaczął się zastanawiać nad swoją żydowską tożsamością, zaczął popierać syjonistów, raczej przez rozum, nigdy nie podzielał bowiem ich religijnego entuzjazmu. Był pacyfistą, dopóki Hitler nie doszedł do władzy i nie zmusił go do rewizji poglądów. Był socjalistą, niepraktykującym w żadnej partii, lecz wierzącym, że społeczeństwa powinny być zorganizowane na zasadach równości i bardziej sprawiedliwego podziału dóbr. W czasach nazizmu jako jeden z pierwszych nie miał złudzeń co do charakteru tego, co nastąpi. Wywoływał u hitlerowców furię, ponieważ jego głos był słyszalny na całym świecie. Pomagał uchodźcom z Niemiec i z Włoch, wystawiał niezliczone opinie i zaświadczenia o pomocy materialnej – niezbędne, aby dostać się do Stanów Zjednoczonych. Także w Stanach Zjednoczonych został zaangażowanym obywatelem, wypowiadającym się na ważne tematy. Charakterystyczny dla jego postawy publicznej był brak interesowności: nie kandydował do niczego ani nie kierowały nim inne motywy niż głębokie wewnętrzne przekonanie. Sądził, że sława naukowa zobowiązuje go do służenia swoim czasem i nazwiskiem (a często także pieniędzmi) wtedy, gdy można komuś pomóc albo gdy jego głos może wpłynąć na postawę innych. Odpisywał na wszystkie listy, które wydawały mu się istotne, zachowywał się tak samo wobec dzieci, jak i prezydentów. Przyjaźnił się z belgijską królową, małego sąsiada w Princeton nauczył jeździć na rowerze. Kolega uczonego z Instytutu Badań Zaawansowanych, Erich Kahler, pisarz i historyk idei, opowiadał, że kiedyś taksówkarz w Nowym Jorku powiedział mu, że sama świadomość, iż na świecie żyje Albert Einstein, sprawia, że czuje się mniej samotny.

Związek między działalnością publiczną a naukową nie był u Einsteina przypadkowy. W jego pojęciu wybitny uczony powinien być zarazem dobrym człowiekiem. Zachwycał się młodym Nielsem Bohrem, kiedy go poznał osobiście: że taki wybitny naukowo i że jest szlachetnym człowiekiem. Bolało go, gdy działo się inaczej, nieważne czy teraz, czy kiedyś. Niedługo przed śmiercią zwierzał się, że bolała go małostkowość Galileusza, który ignorował i lekceważył osiągnięcia Keplera.

Max_Liebermann_Portrait_Albert_Einstein_1925

Rysunek Maksa Liebermanna. „Obraz bardziej przypominał jego niż mnie, co mu zresztą wyszło na dobre”.

Był uczonym, który zawsze czuł pewne wyrzuty sumienia na myśl, że zajmuje się sprawami tak abstrakcyjnymi i odległymi od codzienności. Często mawiał, że nauką najlepiej zajmować się po godzinach pracy – człowiek zachowuje wówczas całe prawo do błędów i nie czuje presji uzyskiwania ciągle oryginalnych wyników. Dla niego praca naukowa była mierzeniem się z problemami zasadniczymi, przedsięwzięciem obarczonym ogromnym ryzykiem niepowodzenia. Inna działalność go po prostu nie interesowała.

Nadużywa się słowa geniusz w odniesieniu do Einsteina. Nie był on jakimś nadczłowiekiem, supermózgiem przerastającym nawet najwybitniejszych swoich kolegów o klasę. Z pewnością Wolfgang Pauli albo Paul M. Dirac nie byli gorzej wyposażeni umysłowo. Jednak pod względem osiągnięć Einstein ustępuje może tylko Isaakowi Newtonowi. Lew Landau miał ranking fizyków w skali logarytmicznej (każde przesunięcie o jednostkę oznaczało wielokrotny spadek możliwości intelektualnych). Newton miał 0; Einstein 0,5; Dirac, Heisenberg i Bohr: 1 (sobie Landau przyznawał 2 – a był wybitny nawet jak na noblistę). Oczywiście, to tylko rodzaj zabawy. Liczą się najróżniejsze cechy jakościowe umysłu, a nie jakaś abstrakcyjna sprawność.

Siłą Einsteina i jego obsesją była jedność fizyki, poszukiwanie coraz ogólniejszych zasad, wyszukiwanie sprzeczności między różnymi teoriami. To on pierwszy postawił na porządku dziennym kwestię istnienia jednej wszechobejmującej teorii fizycznej, teorii wszystkiego, jak się to później utarło nazywać. Sam Einstein pisał o tym kiedyś do swego przyjaciela Paula Ehrenfesta, starając się go pocieszyć, gdyż Ehrenfest był nadmiernie krytyczny wobec swoich możliwości naukowych (co zapewne było jedną z przyczyn jego samobójstwa). „Istnieją tacy, którzy mają dobrego nosa do zasad podstawowych [Prinzipienfuchser] i wirtuozi (…) – pisał – wszyscy trzej [razem z Bohrem – J.K.] należymy do tego pierwszego rodzaju i nie mamy (a na pewno my dwaj) talentu wirtuoza. (…) Efekt spotkania z wybitnym wirtuozem (Born albo Debye): zniechęcenie. Działa to zresztą podobnie w drugą stronę”. Rzeczywiście Einstein i Ehrenfest (a także Bohr) rzadko prowadzili długie obliczenia, a jeśli już to robili, to często się mylili. Ich przewaga była w tym, że z góry potrafili sobie wyobrazić, jaki powinien być wynik, byli intuicjonistami. O pracy Bohra na temat linii widmowych Einstein wypowiedział się, że to „najwyższy stopień muzykalności w dziedzinie myśli” [przeł. J. Bieroń]. Einstein całkiem świadomie nie interesował się szczegółowym opracowaniem pewnych idei, nawet gdy pochodziły od niego. Stwierdził np., że ciepło właściwe w bardzo uproszczonym modelu kryształu powinno spadać wraz z temperaturą. I to mu wystarczyło. Zbadanie bardziej rozbudowanych modeli, lepiej odpowiadających obserwacjom, zostawił kolegom Peterowi Debye’owi i Maksowi Bornowi. Einsteina interesowało kwantowanie, a nie szczegółowe zachowanie różnych kryształów. Jego praca od lat dwudziestych wyglądała najczęściej tak, że miał jakiegoś kompetentnego matematyka do pomocy. Byli to zwykle ludzie po doktoratach, czasem niedługo przed profesurą. Oni wykonywali większość obliczeń, Einstein decydował, co robić dalej. Mówi się czasem, że byli to asystenci Einsteina – bardzo buntował się przeciw takiemu określeniu Leopold Infeld. Z pewnością w wielu przypadkach ich wkład był poważny, ale niemal zawsze były to prace Einstein+X, gdzie X nie był uczonym klasy powiedzmy Landaua (jedynym wyjątkiem była krótka praca z Paulim). Nastawienie na podstawowe zasady towarzyszyło Einsteinowi od samego początku, rzadko też korzystał z wyników eksperymentalnych: albo były one stare i znane (jak ciepło właściwe diamentu albo obrót peryhelium Merkurego), albo ich jeszcze wcale nie było.

Einstein nie był też rasowym matematykiem (w odróżnieniu od Isaaka Newtona czy Edwarda Wittena). Teorie matematyczne interesowały go tylko o tyle, o ile mogły mu się przydać. Ponieważ jednak nie miał czysto matematycznej wyobraźni, więc jego prace w drugiej połowie życia w pewnym sensie nie mogły się udać. Stracił bowiem intuicyjne oparcie w fizyce, a zajął się teoriami, których zasada konstrukcyjna była czysto matematyczna, formalna. Wyszła z tego fizyka matematyczna – czyli coś w rodzaju świnki morskiej (ani świnka, ani morska). Oczywiście, wyostrzam sytuację, te nieudane prace Einsteina wystarczyłyby komu innemu na całkiem przyzwoitą karierę. Są one nieudane jedynie w tym sensie, że nie będziemy się o nich uczyć w podręcznikach.

Model Ehrenfesta: w którą stronę płynie czas?

Tylko jedno prawo fizyki odróżnia przeszłość od przyszłości: II zasada termodynamiki. Mówi ona z grubsza tyle, że temperatury z czasem się wyrównują, różnice stężeń też, a bałagan wypiera porządek. Można temu ogólnemu kierunkowi opierać się przez jakiś czas, ale trzeba z zewnątrz czerpać uporządkowanie. Np. żeby żyć, trzeba jeść, a żeby było co jeść, tzn. do wytworzenia cukrów rośliny korzystają ze źródła uporządkowanego promieniowania, jakim jest Słońce. Technicznie mówiąc, potrzeba źródła niskiej entropii. Entropia mierzy nieuporządkowanie – im jest większa, tym większy bałagan. II zasada termodynamiki mówi, że entropia rośnie (dla układu izolowanego).

Prawa mechaniki, elektrodynamiki i wszelkie inne prawa opisujące oddziaływania nie wyróżniają kierunku czasu. Gdy popatrzeć na film z kilkoma poruszającymi się i oddziałującymi cząstkami, nie można poznać, czy film puszczony jest do przodu, czy do tyłu. Chyba że film przedstawia jakieś ogromne zbiorowisko cząstek, np. jajko rozbijane na jajecznicę. Wtedy od razu poznamy, czy film puszczony został prawidłowo, czy wstecz.

Jak to się dzieje, że entropia rośnie, mimo że podstawowe prawa oddziaływania cząstek nie wyróżniają czasu? Na pytanie to odpowiedział Ludwig Boltzmann. Jego uczniem był Paul Ehrenfest, znakomity nauczyciel i przyjaciel Einsteina. Ehrenfest lubił docierać do istoty zagadnienia bez długich rachunków, miał nawet kłopot z uzyskiwaniem właściwej odpowiedzi w wyprowadzeniach podczas wykładów, zwykle gdzieś zgubił jakieś 2\pi albo znak minus. Mimo to jego studenci wspominali go jako wybitnego wykładowcę, dwóch z nich otrzymało Nagrodę Nobla, inny Casimir, też był wybitnym fizykiem.

Ehrenfest obmyślił kiedyś model pokazujący, skąd się bierze nieodwracalność czasu. Wyobraźmy sobie dwa leżące koło siebie psy: Azora i Burka. Na Azorze siedzi N pcheł, Burek jest wolny od pcheł. Co jednostkę czasu zostaje wylosowana w sposób przypadkowy jedna pchła (są one ponumerowane). Wylosowana pchła przeskakuje na drugiego psa. Jasne jest, że z czasem liczby pcheł na obu psach mniej więcej się wyrównają. Wygląda to np. tak (wzięliśmy N=50):

Obraz6

Jak można opisać dochodzenie do „równowagi” w liczbie pcheł na obu czworonogach? W każdej chwili mikrostan naszego układu złożonego z obu psów można scharakteryzować, podając, na którym psie przebywa każda z N pcheł. Mamy tu 2^N takich mikrostanów. Nie możemy w ramach naszego modelu podać żadnej bardziej szczegółowej informacji. Nawet jednak przy pięćdziesięciu pchłach jest to 2^{50}\approx 10^{15} stanów. Zbyt wiele na praktyczne potrzeby. Możemy ograniczyć się do odnotowania jedynie liczby pcheł na Azorze, jak na wykresach. Tak scharakteryzowane stany są zwykle znacznie ciekawsze, bo np. można je łatwo zmierzyć. Kiedy robimy doświadczenie na gazie w zbiorniku, nie obchodzi nas każda cząsteczka z osobna, lecz tylko pewne globalne charakterystyki, jak temperatura (w istocie jest to średnia energia owych cząsteczek, których nie widzimy i nawet nie chcemy oglądać).

Łatwo zauważyć, że w naszym modelu wszystkie mikrostany są jednakowo prawdopodobne: powstają one przez losowanie. Inaczej jest z makrostanami. Jeśli wiemy, że na Azorze siedzi N_A pcheł, to liczba mikrostanów odpowiadających tej sytuacji jest równa liczbie kombinacji:

W=\binom{N}{N_A}=\dfrac{N!}{N_A!(N-N_A)!}.

Inaczej mówiąc, jest to liczba sposobów wybrania podzbioru pcheł na Azorze ze zbioru wszystkich pcheł (pamiętamy, że są one ponumerowane i potrafimy je odróżniać). Jasne jest, że najwięcej sposobów realizacji takiego podzbioru będzie wówczas, gdy pchły rozłożą się po równo (pomijamy przypadek, gdy ich liczba jest nieparzysta i nie mogą się rozłożyć dokładnie po równo). Ale także makrostany w pobliżu tego równego podziału będą dość prawdopodobne. Można obliczyć rozkład prawdopodobieństwa po danej liczbie jednostek czasu. Wygląda on tak:

Pchly_prawdopodobienstwo

Zaczynaliśmy od wszystkich pcheł na Azorze, ale po pewnym czasie układ osiąga równowagę i najbardziej prawdopodobny jest rozkład, w którym połowa pcheł przebywa na Burku albo jakiś do niego podobny. Trzeba pamiętać, że nawet jeśli w jakiejś chwili dokładnie połowa pcheł będzie na Azorze, to stan ten nie utrzyma się na stałe, liczba pcheł będzie się zmieniać w przypadkowy sposób.

Obraz4

Jest oczywiście możliwe, że w pewnej chwili wszystkie pchły znajdą się z powrotem na Azorze, a nawet wiadomo, że tak kiedyś będzie. Nasz model nie ma wbudowanego kierunku czasu, każdy z przebiegów mógłby równie dobrze wydarzyć się w odwrotnej kolejności. Oto wielka tajemnica czasu: czas płynie tak, że zaczynając od sytuacji, gdy wszystkie pchły siedziały na Azorze, po pewnym czasie (najprawdopodobniej) zastaniemy nasz układ w jednym ze stanów bliskich „równowagi”. Czas płynie tak, aby liczba pcheł się wyrównywała. I to właściwie wszystko, co trzeba wiedzieć o II zasadzie termodynamiki. Jeśli odczekamy dostatecznie długo, to (na ogół) zastaniemy układ w jakimś stanie spośród tych najbardziej prawdopodobnych. Czas płynie w określonym kierunku nie z powodu praw fizyki, ale z tego powodu, że nasz świat zaczął się w stanie, gdy wszystkie pchły siedziały na Azorze. Zatem nie prawa fizyki, lecz warunki początkowe. Kolejne „dlaczego” w tej sprawie przenoszą nas aż do Wielkiego Wybuchu i w tym punkcie możemy odpowiedzieć: „nie wiemy”. Jak ktoś lubi wyobrażać sobie Stwórcę, może uznać, że wybrał On bardzo szczególny rodzaj wszechświata.

creator

W przestrzeni stanów równowaga termiczna zajmuje najwięcej miejsca, więc od jeśli zaczniemy od stanu dalekiego od równowagi, to w końcu na nią natrafimy.

equilibrium

(Rysunki Rogera Penrose’a)

Trzy uwagi na koniec:

1. Czemu nie obserwuje się spontanicznego powrotu wszystkich pcheł na Azora? Dlatego, że jest to jeden z 10^{15} stanów, a wszystkie są tak samo prawdopodobne. Gdy weźmiemy za N np. liczbę Avogadro, okaże się, że wieku wszechświata za mało, byśmy doczekali takiej sytuacji.

2. Entropia naszego ukladu jest równa

S=k\ln W.

Jest to najważniejsze odkrycie Boltzmanna. Wynika z niego w szczególności, że entropia nie rośnie zawsze, lecz tylko przeważnie. II zasada termodynamiki obowiązuje nadal, gdy układ jest duży.

(Stała k, zwana stałą Boltzmanna, potrzebna jest, żeby tak zdefiniowana entropia była dokładnie tym samym, czego używano przed Boltzmannem.)

3. Czemu odpowiadają pchły w „poważnej” fizyce? Można sobie wyobrażać spiny \frac{1}{2} w kontakcie z termostatem o bardzo wysokiej temperaturze, żeby zmiany entropii termostatu można było pominąć w rozważaniach.