Szczęśliwy rok Erwina Schrödingera (1926)

W listopadzie 1926 roku seria sześciu ostatnich prac Schrödingera ukazała się w wydaniu książkowym. Jak sam pisał we wstępie do tego przedruku:

Młoda przyjaciółka powiedziała o nich niedawno: „Popatrz, kiedy je zaczynałeś, nie myślałeś w ogóle pojęcia, że wyjdzie z nich tak wiele sensownych rzeczy”. Powiedzenie to, z którym (prócz pochlebnego przymiotnika) w pełni się zgadzam, podkreśla fakt, że prace zebrane w tym tomie powstawały jedna po drugiej. Ich autor, pisząc wcześniejsze części, nie znał jeszcze części późniejszych.

Erwin Schrödinger stał się dzięki nim sławny i choć także wcześniej i później tworzył prace interesujące bądź nawet wybitne, żadna z nich nie dorównywała tej złotej serii.

Ową przyjaciółką była czternastoletnia Itha Junger („Ithi”). Ich dziadek Georg Junger był bogatym obywatelem Salzburga, właścicielem firmy zajmującej się handlem hurtowym. Interes prowadzili nadal jego dwaj synowie, to jeden z nich, Hans, był ojcem dwóch niejednakowych bliźniaczek: Ithy i Roswithy, uczęszczających do szkoły klasztornej. Mówiło się, że matka żony Schrödingera Anny była nieślubną córką Georga Jungera. W każdym razie obie rodziny były blisko i żona Hansa była matką chrzestną Anny. Itha miała kłopoty z matematyki, Anny zaproponowała, że Erwin mógłby pomóc, bliźniaczki przeniesiono do klasztoru blisko Zurychu, żeby mogły korzystać z korepetycji. Erwin bardzo się z nimi zaprzyjaźnił, a wkrótce i zakochał w Ithi. Ich osobliwy, nawet w tych swobodnych czasach, romans trwał wiele lat, związek został skonsumowany wkrótce po siedemnastych urodzinach Ithi.

Mechanika kwantowa Heisenberga i jego kolegów z Getyngi przyjmowana była z mieszanymi uczuciami przez środowisko fizyków. Przeskoki kwantowe, abstrakcyjny formalizm macierzowy, filozofia ograniczenia się tylko do wielkości bezpośrednio obserwowalnych i porzucenia raz na zawsze poglądowych wyobrażeń atomu – wszystko to traktowane było z rezerwą. Podejście Schrödingera wydawało się nie tylko bardziej zrozumiałe matematycznie, ale także umożliwiało wyobrażenie sobie, co właściwie dzieje się wewnątrz układów o skali atomowej. Schrödinger wykazał także, że przynajmniej w prostych sytuacjach oba podejścia są równoważne. Mimo to, Heisenberg wykazywał wobec „mechaniki falowej” postawę wrogą i nieprzejednaną. Jego mentor, Niels Bohr, zaprosił Schrödingera do Kopenhagi, gdzie zadręczał wręcz swojego gościa, atakując jego sposób myślenia.

Dla zwolenników Bohra elektron był punktową cząstką, a prawa kwantowe dotyczyły tylko prawdopodobieństw. Historia przyznała im rację, choć pewne problemy interpretacyjne mechaniki kwantowej pozostały do dziś. Trzeba jednak wyraźnie powiedzieć, że jak dotąd żaden eksperyment nie zaprzeczył prawom mechaniki kwantowej, „szara strefa” dotyczy raczej filozoficznego samopoczucia. Wciąż nie znamy wszystkich szczegółów przejścia z poziomu mikroświata do makroświata, w którym żyjemy i w którym powstała fizyka klasyczna.

Błyskawiczna kariera Schrödingera wiązała się z tym, że dla konserwatywnie nastawionych fizyków, jego podejście wydawało się łatwiejszą do przyjęcia wersją teorii kwantowej. Schrödinger został zasypany listami i zaproszeniami od luminarzy ówczesnej fizyki: od sędziwego Hednrika Lorentza, przez Maksa Plancka, Alberta Einsteina aż do Wilhelma Wiena i Arnolda Sommerfelda. Został członkiem bardzo elitarnego grona: Planck gościł go w swoim domu podczas wizyty w Berlinie. Dobiegający siedemdziesiątki i wieku emerytalnego Planck niewątpliwie myślał przy tym o przyszłości swojej katedry w Berlinie, najbardziej prestiżowego stanowiska w dziedzinie fizyki teoretycznej na świecie. Niedługo później Schrödinger trafił na krótką listę kandydatów i uzyskał to stanowisko. Uznano przy tym, że Werner Heisenberg, choć niewątpliwie genialny, jest po prostu jeszcze za młody na katedrę. Schrödinger odbył też podróż do Stanów Zjednoczonych, stając się jednym z długiego szeregu wizytujących sław europejskich. Amerykanie nie byli jeszcze potęgą w fizyce teoretycznej, ale starali się kusić wysokimi honorariami, uzyskując przynajmniej tyle, że odwiedzali Stany Zjednoczone wszyscy właściwie wybitni fizycy i matematycy. Schrödinger też dostał oferty pracy w USA, ale nie rozpatrywał ich poważnie. Ameryka mu się nie podobała, duch purytański, przejawiający się w owych latach, m.in. w prohibicji, wydawał mu się barbarzyństwem. Na widok Statui Wolności miał powiedzieć, że brakuje jej tylko zegarka na ręku.

William F. Meggers Gallery of Nobel Laureates

Erwin Schrödinger bronił w roku 1926 i później stanowiska, że elektron nie jest punktową cząstką, lecz raczej pewnym rozmytym obiektem. Stanowisko to nie dało się obronić. Przedstawimy jeden z argumentów Schrödingera. Jest on prawdziwy, lecz sytuacja, której dotyczy, okazała się nietypowa. Nie można było tego jednak wiedzieć latem 1926 roku.

Rozpatrzmy oscylator harmoniczny, czyli cząstkę oscylującą wokół minimum energii potencjalnej. Ponieważ każdą funkcję wokół minimum można w przybliżeniu uważać za parabolę, więc jest sens rozważać przypadek kwadratowej, czyli parabolicznej, energii potencjalnej. Rozwiązanie równania Schrödingera daje nam wówczas następujące funkcje falowe.

skrypt Sagemath do generowania obrazka

Są to drgania o różnych dopuszczalnych energiach (nieparzyste wielokrotności wielkości \frac{1}{2}\hbar \omega, gdzie \omega jest częstością kołową naszego oscylatora). Klasycznie biorąc, obszar położony poza przecięciem potencjału z poziomą prostą danej energii całkowitej jest niedostępny; cząstka nie może się tam znaleźć, ponieważ musiałaby mieć ujemną energię kinetyczną. W fizyce kwantowej funkcja falowa rozlewa się poza ten klasycznie dostępny obszar, co jest tzw. zjawiskiem tunelowym. Każdy z tych stanów stacjonarnych ma bardzo prostą zależność od czasu. Należy funkcję z wykresu pomnożyć przez czynnik

\exp(-i\frac{Et}{\hbar})=\exp(-i\omega(n+\frac{1}{2})t).

Znaczy to, że zależność od czasu jest trywialna, nic się w naszej funkcji falowej nie porusza, opisane stany są falami stojącymi. Schrödinger zauważył, jak ze stanów o ustalonej energii zbudować rozwiązanie równania, które opisuje drgania w czasie. W gruncie rzeczy jest to bardzo proste. Chcąc zapoczątkować drgania oscylatora, wystarczy wychylić jego masę z położenia równowagi, a następnie puścić ciężarek, który zacznie wykonywać oscylacje.

Można analogicznie, wziąć funkcję falową stanu podstawowego oscylatora

\Psi_0(x)=C\exp(-\frac{x^2}{2}),

a następnie przesunąć ją do jakiegoś nowego położenia x_0:

\Psi(x)=C\exp(-\frac{(x-x_0)^2}{2}),

Jeśli tę ostatnią funkcję potraktujemy jako warunek początkowy w równaniu Schrödingera, to otrzymamy funkcje opisujące paczkę falową poruszającą się oscylacyjnie wokół położenia równowagi. W pracy Schrödingera („Naturwissenschaften”, 1926) przedstawiona została jej część rzeczywista:

Jest to zdjęcie migawkowe, paczka falowa będzie bowiem oscylować wokół położenia równowagi. Zdaniem Schrödingera ta właśnie fala jest elektronem. Ponieważ ciągle traktował on liczby zespolone jako wypadek przy pracy, więc wziął cząść rzeczywistą rozwiązania.

Wiemy jednak, że rację miał tu Max Born: należy obliczyć kwadrat zespolonego modułu funkcji falowej i jego wielkość określa rozkład prawdopodobieństwa. Otrzymamy wówczas klasyczne drgania rozmytej funkcji falowej.

Wikimedia Commons

Nie jest to jednak elektron, lecz prawdopodobieństwo jego znalezienia w danym miejscu i czasie. Dziś stany takie znane są jako stany koherentne. Przypadek oscylatora jest wyjątkowy: na ogół taka zlokalizowana funkcja falowa rozmywa się w czasie, choć w niektórych przypadkach może się później odbudowywać, jak na poniższym obrazku (chodzi tu o wysokowzbudzone stany atomu wodoru: mogą one przez chwilę przypominać klasyczny elektron na orbicie Bohra, potem ten obraz się rozmywa.

Mamy tu trzydzieści keplerowskich obiegów elektronu zbudowanych ze stanów wokół n=180

Erwin Schrödinger nie pogodził się z kopenhaską interpretacją mechaniki kwantowej, stał się jednym z jej krytyków, podobnie jak Einstein poszukujących innej drogi. Romans z Ithi kontyuowany był w latach berlińskich, w jakimś momencie uczony chciał się nawet z nią ożenić, ale do tego nie doszło. Po roku 1933 nie chciał zostać w nazistowskich Niemczech (co było dość wyjątkowe, ponieważ nie był Żydem i nie musiał rezygnować), wrócił na trochę do Austrii, ale wskutek Anschlussu także Austria stała się brunatna. Jego późniejsze afery uczuciowo-erotyczne stanowiły przeszkodę w objęciu katedr w Oxfordzie i Princeton, ostatecznie znalazł sobie miejsce w katolickiej Irlandii.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s