Max Born: Nagroda Nobla za przypis (1926, 1954)

Max Born w roku 1954 otrzymał Nagrodę Nobla za „fundamentalne badania w dziedzinie mechaniki kwantowej, a szczególnie za statystyczną interpretację funkcji falowej”. Nagrodę tę dzielił po połowie z Waltherem Bothe, którego eksperymenty pozwoliły wyjaśnić, że światło ma naturę cząstkową. Była to jedna z tych nagród, które przyznawane są jakby dla wyrównania dawnej niesprawiedliwości. Z perspektywy trzydziestu lat widać było, jak niezwykłym epizodem w dziejach fizyki były lata 1925-1927: ani wcześniej, ani później nie dokonano tak fundamentalnego przełomu w tak krótkim czasie. Fizycy wciąż zajmują się badaniem konsekwencji zasad wtedy sformułowanych, po drodze zrozumiano budowę atomów, cząsteczek chemicznych, ciał stałych, jąder atomowych i samych cząstek elementarnych, zbudowano tranzystory, lasery itd. Współczesna nanotechnologia to nic innego niż praktyczne zastosowania mechaniki kwantowej – coraz częściej uczy się tego przedmiotu inżynierów.

Max_Born

Zdjęcie: Wikimedia

W roku 1925 Max Born miał czterdzieści trzy lata i był profesorem fizyki w Getyndze. Umiał on przyciągać talenty: siedmiu jego studentów i doktorantów otrzymało Nagrody Nobla. To głównie dzięki niemu Getynga stała się w tamtych czasach głównym ośrodkiem fizyki, obok Kopenhagi, gdzie podobną rolę odgrywał Niels Bohr. Born zwierzał się w lipcu Einsteinowi:

Moi młodzi ludzie, Heisenberg, Jordan, Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. [Chodzi o szczegółową wiedzę dotyczącą widm różnych pierwiastków] Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka.

Heisenberg radził się Borna, co zrobić z tą pracą, czy ma ją już opublikować, nie umiał się bowiem w tamtej chwili dalej posunąć. Max Born też jeszcze zapewne nie rozumiał, jak głęboki przewrót się szykuje. W drugiej połowie roku razem z Jordanem i Heisenbergiem rozwinęli pomysły Heisenberga w systematyczną teorię. Można było w jej ramach obliczać pewne wielkości, np. skwantowane energie oscylatora albo atomu wodoru. Nie bardzo jednak rozumiano, jak należy interpretować matematyczny formalizm, który dostarczał tych wyników.
W czerwcu 1926 roku Max Born zajął się zagadnieniem zderzeń cząstek w nowej teorii. Jeśli początkowo cząstka znajdowała się w stanie opisanym falą \psi^{0}_{n} (np. poruszając się w określonym kierunku z określonym pędem), to po zderzeniu jej stan był sumą wielu różnych stanów m (odpowiadających np. różnym kierunkom rozproszenia).

\psi^{1}_{n}=\sum_{m}\Phi_{nm}\psi^{0}_{m}

Wartości \Phi_{nm} informują o zawartości fal danego rodzaju w stanie końcowym. Jeśli\Phi_{nm} dla jakiegoś m jest równe zeru, to stan m w ogóle się nie pojawi. Born pisze: „Jeśli chce się ten wynik zrozumieć w sposób korpuskularny, to możliwa jest tylko jedna interpretacja: \Phi_{nm} określa prawdopodobieństwo” rozproszenia do stanu m. Do zdania tego została dołączona uwaga na etapie korekty pracy: „Dokładniejsze rozważania pokazują, że prawdopodobieństwo jest proporcjonalne do kwadratu \Phi_{nm}”. To jest właśnie ten przypis wart Nagrody Nobla. Ściśle biorąc, chodzi o kwadrat modułu zespolonego, bo \Phi_{nm} jest zespolone.

Oczywiście, to nie jest cały wkład Borna do mechaniki kwantowej. Podobne myśli chodziły wówczas po głowie co najmniej paru osobom, Born zdecydował się je rozwinąć. Miał też świadomość wagi tego kroku: w tej samej pracy pisze, że osobiście skłonny jest porzucić determinizm w świecie atomowym. A więc jeśli elektron w danym stanie zderzy się z drugą cząstką, to wynik za każdym razem może być inny. Nie dlatego, że nie potrafimy dokładnie powtórzyć warunków doświadczenia, ale dlatego że sama przyroda działa losowo. Był to niezmiernie ważny krok. Wszelka fizyka kwantowa jest właściwie sztuką obliczania takich wielkości zespolonych, zwanych dziś amplitudami prawdopodobieństwa. Chcąc otrzymać wielkość mierzalną doświadczalnie, należy amplitudę podnieść do kwadratu i otrzymujemy wówczas prawdopodobieństwo zajścia danego zdarzenia. Tylko tyle i aż tyle.

Nowa fizyka wciągnęła niemal wszystkich. Wyjątkiem był Albert Einstein, tylko kilka lat starszy od Borna, uważany w tamtym momencie za najwybitniejszego żyjącego fizyka. W grudniu 1926 roku Einstein napisał do Borna: „Mechanika kwantowa jest bardzo imponująca. Ale mój głos wewnętrzny mówi, że to nie jest sedno sprawy. Teoria ta wiele daje, ale niewiele nas przybliża do tajemnic Starego. Ja przynajmniej jestem przekonany, że On nie gra w kości”. Pozostał wierny temu przekonaniu aż do śmierci. Po niemal wieku widać, że niezmiernie trudno byłoby jakoś obejść fizykę kwantową, choć niektórzy zastanawiają się nad taką możliwością (np. Gerard t Hooft).

 Max Born był zawiedziony, kiedy kilka lat później jako jedyny z Getyngi Nagrodę Nobla otrzymał Werner Heisenberg. Także Heisenbergowi było głupio, napisał nawet przepraszający list do Borna. Kiedy w latach pięćdziesiątych zdecydowano się naprawić dawny błąd, pominięto Pascuala Jordana, trzeciego ważnego uczonego z Getyngi. To ostatnie było jednak zapewne celowe: Jordan, potomek napoleońskiego żołnierza, został w latach trzydziestych gorącym nazistą. Niecałe dziesięć lat po tym, jak Niemcy zniszczyli pół Europy, przyznawanie mu Nagrody Nobla wywołałoby z pewnością gorące protesty. Jordan został zrehabilitowany i niebawem zajął się znowu polityką, popierając rozmieszczenie broni jądrowej na terenie Niemiec.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s