Skąd się bierze Maxwellowski rozkład prędkości cząsteczek w gazie doskonałym?

James Clerk Maxwell podał w roku 1859 postać rozkładu prawdopodobieństwa prędkości cząsteczek w gazie doskonałym. Okazuje się, że prawdopodobieństwo, iż np. x-owa składowa prędkości losowo wybranej cząsteczki należy do przedziału (x, x+dx) równe jest

p(x)dx=C\exp(-\alpha x^2)dx,

gdzie C jest stałą normalizacyjną (wybraną tak, aby prawdopodobieństwo zdarzenia pewnego było równe 1). Jest to słynny rozkład Gaussa, zwany też rozkladem normalnym, gdyż pojawia się on w najróżniejszych kontekstach.

Składowa x-owa prędkości danej cząsteczki zmienia się wskutek zderzeń z innymi cząsteczkami w sposób przypadkowy i w rezultacie opisywana jest takim rozkładem o kształcie dzwonu. Jeśli całkowita energia gazu jest stała, to stała jest także suma kwadratów wszystkich prędkości:

E=\dfrac{m{\vec{v}_1}\,^2}{2}+\ldots+\dfrac{m\vec{v}_N\,^2}{2}=const.

(m jest masą cząseczki gazu). Kwadrat każdego wektora jest sumą trzech kwadratów jego współrzędnych. Oznaczając więc wszystkie składowe wszystkich prędkości cząsteczek gazu jako x_1,x_2, \ldots, x_{3N}, mamy 3N-wymiarową przestrzeń prędkości. Warunek stałości energii przyjmuje postać:

x_1^2+x_2^2+\ldots+x_{3N}^2=R^2,

co geometrycznie oznacza, że koniec wektora prędkości Y=[x_1, x_2,\ldots, x_{3N}] leży na powierzchni sfery S^{3N-1} o promieniu R (sfera ma o jeden wymiar mniej niż przestrzeń).

Aby wyprowadzić rozkład Maxwella, przyjmijmy najprostsze założenie: każde położenie końca wektora Y na sferze jest jednakowo prawdopodobne.

Szukamy teraz rozkładu prawdopodobieństwa którejkolwiek pojedynczej składowej np. x\equiv x_1 (jest ona jednocześnie x-ową składową prędkości cząsteczki nr 1). W przypadku sfery S^2 możemy to narysować.

Prawdopodobieństwo, że x bedzie leżeć w cienkim pasie sfery zaznaczonym na rysunku jest proporcjonalne do pola powierzchni pasa sferycznego równej iloczynowi długości razy szerokość:

\Delta S=2\pi R\sin\vartheta \times R\Delta \vartheta.

Sumując pola powierzchni takich pasów, czyli całkując, otrzymamy wzór na pole powierzchni sfery S^2:

S_2(R)={\displaystyle \int_{0}^{\pi} 2\pi R^2 \sin\vartheta d\vartheta}=4\pi R^2.

Prawdopodobieństwo znalezienia końca wektora Y w pasie sferycznym byłoby w takim razie równe ilorazowi obu tych wielkości

p(\vartheta)\Delta\vartheta=\dfrac{2\pi R \sin\vartheta}{4\pi R^2}\times R\Delta\vartheta= \dfrac{S_1(R\sin\vartheta)}{S_2(R)} R\Delta \vartheta.

Szerokość naszego pasa jest zarazem „polem” sfery S^1, tzn. długością okręgu o promieniu R\sin\vartheta (co widać z rysunku). Dla trójwymiarowego wektora Y rozkład ten nie jest szczególnie interesujący. Fizycznie odpowiadałby jednocząstkowemu gazowi doskonałemu. Prędkość tej jednej jedynej cząsteczki przyjmuje z równym prawdopodbieństwem dowolny kierunek w przestrzeni. Długość wektora jest określona przez energię tej cząstki.

Ostatnie wyrażenie dla prawdopodobieństwa można zastosować równie dobrze w przestrzeni 3N-wymiarowej. Możemy zawsze ustalić wartość jednej ze współrzędnych x_1\equiv x. Pozostałe współrzędne spełniają wtedy warunek

x_2^2+x_3^2+\ldots+x_{3N}^2=R^2-x^2

i jest to jedyne ograniczenie. Znaczy to, że pozostałe składowe leżą na sferze wymiarze o jeden mniejszym i mniejszym promieniu. Pole powierzchni sfery S^n jest równe pewnej stałej zależnej od wymiaru razy promień sfery do potęgi n-tej:

S_n(r)=C_n r^n.

Korzystając z tego faktu możemy szukane prawdopodobieństwo zapisać w postaci

p(x)dx=\dfrac{S_{3N-2}(\sqrt{R^2-x^2})}{S_{3N-1}(R)} R\Delta\vartheta \sim \left(1-\dfrac{x^2}{R^2}\right)^{\frac{3N}{2}}dx.

Ostatnie wyrażenie możemy dla dużych wartości N zapisać jako potęgę liczby e:

\left(1-\dfrac{x^2}{R^2}\right)^{R^2\cdot\frac{3N}{2R^2}}dx=\exp(-\alpha x^2) dx.

Parametr \alpha jest równy

\alpha=\dfrac{3N}{2R^2}=\dfrac{3Nm}{4E}=\dfrac{3m}{4\epsilon},

gdzie \epsilon jest energią przypadającą na jedną cząsteczkę gazu. Możemy wyrazić tę ostatnią energię za pomocą temperatury T:

\epsilon=\dfrac{3}{2}kT \Rightarrow \alpha=\dfrac{m}{2kT}.

Otrzymaliśmy rozkład Maxwella. Stałą C można znaleźć z warunku unormowania (można ją też obliczyć bezpośrednio, potrzeba jednak wówczas wiedzieć więcej nt. stałych C_n, czyli postaci wzoru na pole sfery S^n).

Rozkład Maxwella wynika więc z założenia o równomiernym rozkładzie prawdopodobieństwa na sferze w przestrzeni 3N-wymiarowej. Założenie to nazywane jest rozkładem mikrokanonicznym i jest jednym z postulatów fizyki statystycznej. Wyobrażamy sobie, że stan naszego układu, czyli wektor Y wędruje po dozwolonej powierzchni w taki sposób, że jego koniec może znaleźć się z jednakowym prawdopodobieństwem w otoczeniu każdego punktu sfery. Jest to założenie ergodyczności.

Oczywiście, nie znaczy to, że układ zderzających się cząstek gazu musi być ergodyczny. Jak to często bywa w fizyce: z jednej strony pośrednio sprawdzamy to założenie, badając rozmaite jego konsekwencje i porównując z doświadczeniem. Z drugiej strony, można badać pewne proste przypadki, aby sprawdzić, czy założenie ergodyczności jest prawdziwe w tych sytuacjach. W 1963 r. Yakov Sinai, wybitny matematyk rosyjski, udowodnił, że gaz doskonały sztywnych zderzających się kul jest ergodyczny.

W pewnej chwili zamieniliśmy R \Delta\vartheta wartoscią dx. Nie są one ściśle biorąc równe, mamy bowiem

dx=-R\sin\vartheta d \vartheta \Rightarrow Rd\vartheta=\dfrac{dx}{\sqrt{1-\frac{x^2}{R^2}}}.

Dodatkowy czynnik pod pierwiastkiem nie ma znaczenia, gdy wartości R są duże. Widać to też z rysunku: gdy |x|\ll R, to R d\vartheta \approx dx.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s