Oliver Heaviside i głuchy telefon (1886-1891)

Heaviside był człowiekiem trudnym w kontaktach, nie bardzo też interesowała go kariera zawodowa. Rodzina była zbyt biedna, aby mógł zdobyć solidne wykształcenie, toteż zakończył swą szkolną edukację w wieku szesnastu lat. Przebyta w dzieciństwie szkarlatyna upośledziła jego słuch, izolując go od rówieśników. Choć z czasem odzyskał w znacznej mierze słuch, to pozostał autsajderem na resztę życia. Krótko pracował jako telegrafista i pracownik techniczny u boku starszego brata Arthura w firmie zarządzającej kablem pomiędzy Danią i Anglią, lecz zwolnił się w wieku dwudziestu czterech lat i już nigdy później nie pracował zawodowo. Mieszkając w pokoju u rodziców, zajmował się eksperymentalnie i teoretycznie elektrycznością, jedyne pieniądze zarabiał z publikacji artykułów w fachowym piśmie „The Electrician”. Był jednym z pierwszych kontynuatorów Jamesa Clerka Maxwella, udało mu się uprościć i przejrzyściej zapisać równania elektromagnetyzmu. Odkrył rachunek operatorowy ułatwiający rozwiązywanie równań różniczkowych (posługiwał się funkcją δ na długo przed Dirakiem). Zastosował też zapis wektorowy, bez którego trudno dziś sobie wyobrazić teorię Maxwella. Dzięki bratu, pracującemu jako inżynier, znał praktyczne problemy telefonii i podał metodę zbudowania linii przesyłowej w taki sposób, aby nie zniekształcała sygnałów. Problem był palący, ponieważ telefonia rozwijała się burzliwie i wraz ze wzrostem odległości sygnał nie tylko był słabszy, ale też ulegał zniekształceniu. Dalsza historia tego odkrycia Heaviside’a była zapewne do przewidzenia: z początku nie chciano mu wierzyć, a później to inni zarobili miliony na wcieleniu jego idei w życie.

Biografia Heaviside’a skłania do zastanowienia nad rolą autorytetów w różnych dziedzinach. Będąc jednym z najwybitniejszych uczonych swoich czasów, postrzegany był jako jakiś niedouczony telegrafista, a przy tym dziwak. Jego artykuły w „The Electrician” były trudne do zrozumienia, a może po prostu nikt nie przykładał się do ich zrozumienia, ponieważ były autorstwa jakiegoś urzędnika, nie wiadomo właściwie kogo. Tymczasem stanowiły one oryginalny wykład do teorii elektromagnetyzmu. Gdy Heinrich Hertz odkrył fale elektromagnetyczne, w pracach Heaviside’a znaleźć można było nowocześniejsze i prostsze ujęcie teorii, która tak wspaniale się potwierdziła. Nasz „telegrafista” wyprzedził tu znacznie większość uczonych brytyjskich i kontynentalnych. W szczególności jego podejście górowało nad konserwatywnym i sceptycznym nastawieniem Williama Thomsona, późniejszego lorda Kelvina. Ten ostatni nie potrafił się przekonać do teorii Maxwella, co miało znaczenie, ponieważ był najsławniejszym uczonym Wielkiej Brytanii, zasiadał we wszystkich możliwych radach i towarzystwach, a każde jego słowo prasa traktowała jak wyrocznię. Tak było, gdy w 1888 roku, po odkryciu Hertza, Thomson orzekł, iż jego zastrzeżenia wobec teorii Maxwella nieco się zmniejszyły (uznał bowiem, że prąd przesunięcia – najważniejszy element pojęciowy zaproponowany przez Maxwella – z „zupełnie nie do utrzymania” awansował w jego oczach do kategorii „niezupełnie do utrzymania”). Thomson miał swoją wizję idealnej teorii elektromagnetyzmu, prawdopodobnie zresztą dlatego nie osiągnął końcowego sukcesu. W każdym razie to młodszy od niego James Clerk Maxwell rozwiązał problem, choć sir William nie chciał się z tym pogodzić.

 

Baron Kelvin of Largs

William Thomson umiał jednak zachowywać się fair i dzięki temu Oliver Heaviside doczekał się nieco uznania za życia. Wcześniej, w roku 1887, przeszedł swe najgorsze chwile, gdy stracił możliwość publikowania, a zarazem też skromne dochody, jakie ta działalność zapewniała. Za 40 funtów rocznie redakcja otrzymywała ciągły strumień oryginalnych publikacji z dziedziny elektromagnetyzmu. Kryzys nastąpił wtedy, gdy Oliver Heaviside wszedł w konflikt z Williamem Henry’m Preece’em, ważnym ekspertem brytyjskiej poczty. Preece starał się przeforsować kosztowną decyzję budowy linii telefonicznych z kablem miedzianym w miejsce żelaznego. Argumentował, że dzięki temu wzrośnie zasięg rozmów, ponieważ kable żelazne wytwarzają pole magnetyczne, a to prowadzi do strat energii (zmienne pole magnetyczne indukuje dodatkowe napięcie, mówi się o indukcyjności kabla: miedziane zmniejszały wg Preece’a indukcyjność i na tym polegała ich wyższość). Mało tego, Preece twierdził, że wykazał fałszywość teorii Maxwella. W tym samym czasie Arthur i  Oliver próbowali opublikować pracę, która podważała poglądy Preece’a, a nawet im przeczyła: otóż pole magnetyczne wcale nie musi przeszkadzać w przesyłaniu rozmów telefonicznych, a nawet może pomagać. Pewny siebie Preece zakazał publikacji. Obaj bracia zareagowali na to rozmaicie: Arthur jako podwładny Preece’a przestał się zajmować tym tematem, Oliver natomiast zaczął z upodobaniem dowodzić niekompetencji Preece’a, którego określał m.in. jako „the eminent scienticulist” – czyli coś w rodzaju „wybitnego mędrka”. Racja naukowa była całkowicie po stronie Heaviside’a, znalazł on warunek, jaki spełniać powinna linia przesyłowa, aby nie zniekształcała rozmów (chodzi o to, by składowe o różnych częstościach tłumione były w jednakowym stopniu, w ten sposób daleki odbiorca otrzymuje sygnał słabszy, lecz podobny do wysłanego). Ów warunek Heaviside’a był kontrintuicyjny, lecz prawdziwy i oznaczał, że należy w praktyce zwiększać indukcyjność linii, czyli wytwarzane przez nie pole magnetyczne. Nacisk Preece’a sprawił, że zmienił się redaktor naczelny „The Electrician” i nowy już nie chciał publikować artykułów Heaviside’a.

Karykatura z 1888 r.: Preece pod sztandarem wieloletnich doświadczeń pokonuje Olivera Lodge’a (który podawał w wątpliwość skuteczność używanych piorunochronów i krytykował jego teoretyczne rozważania, stając po stronie Heaviside’a)

Atmosfera wokół niego poprawiła się dopiero wówczas, gdy publicznie docenił jego teorię William Thomson. Otworzyło to drogę do przyjęcia Heaviside’a w roku 1891 na członka Towarzystwa Królewskiego, ułatwiło też publikację kolejnych prac. Zadziwiająco mało zmieniło się w życiu uczonego, który przywiązywał chyba większą wagę do możliwości publikacji niż do zarobku. Nadal pozostał prywatnym uczonym, po śmierci rodziców jego środki do życia mocno się skurczyły. Dzięki dyskretnym staraniom paru wybitnych uczonych zaczął Heaviside otrzymywać skromną emeryturę (dyskretnych, ponieważ drażliwy Heaviside nie chciał jałmużny). Żył dość długo, by widzieć, jak jego idea zwiększenia indukcyjności kabli telefonicznych została wcielona w życie jako pupinizacja albo krarupizacja. Zarówno Amerykanin serbskiego pochodzenia Mihajlo Pupin, jak i Duńczyk Karl Emil Krarup, wyciągnęli praktyczne wnioski z teorii Heaviside’a. Pupin po długiej batalii prawnej z firmą AT&T zarobił na swoim patencie 450 000 $ (blisko 30 mln $ obecnie). Jego rozwiązanie polegało na umieszczaniu w stałych odległościach cewek zwiększających indukcyjność. Krarup zastosował żelazne druty (zwiększające pole magnetyczne) oplatające miedziany rdzeń. Dzięki temu w pierwszych latach XX wieku wzrósł zasięg linii telefonicznych, a ich układanie stało się tańsze. Także kariera Preece’a, który nigdy nie przyznał się do błędu, nie doznała żadnego uszczerbku i rozwijała się pomyślnie, z czasem doczekał się on tytułu szlacheckiego. Tylko Heaviside dziwaczał coraz bardziej, mieszkał sam, pod koniec życia zastąpił meble blokami granitu, zaniedbał się i cierpiał na rodzaj manii prześladowczej. Nie dowiemy się już, czy dziwaczał, ponieważ nie osiągnął pozycji w społeczeństwie odpowiadającej jego talentowi, czy też odwrotnie: nie udało mu się zdobyć pozycji w bardzo konkurencyjnym wiktoriańskim społeczeństwie, ponieważ zbytnio odbiegał od przyjętych standardów zachowania i nawet talent nie mógł tu pomóc.

Die Vermittlungszentrale im Berliner Fernspreschamt II
Original: Frankfurt am Main, Deutsches Postmuseum
Foto: Berlin, 1894

Centrala telefoniczna w Berlinie, 1894 r.

Technika telefoniczna rozwijała się szybko. Kolejnym krokiem było skonstruowanie wzmacniacza na triodach (regeneratora sygnałów), który zaczął być stosowany komercyjnie tuż przed pierwszą wojną światową. Heaviside zdążył jeszcze przewidzieć istnienie jonosfery, dzięki której fale radiowe rozchodzą się wzdłuż powierzchni Ziemi, umożliwiając np. międzykontynentalne przekazywanie sygnału radiowego.

Pokażemy na przykładzie, jak Heaviside potraktował kwestię przesyłania sygnałów bez zniekształceń. Linia przesyłowa to rozciągnięty bardzo obwód. Można uważać, że każdy jego fragment o długości \Delta x składa się z podstawowych elementów obwodu: oporu R\Delta x, indukcyjności L\Delta x oraz połączonych równolegle pojemności C\Delta x oraz przewodnictwa G\Delta x. Dla pierwszego i ostatniego elementu obowiązuje prawo Ohma (przewodnictwo jest odwrotnością oporu):

\dfrac{U}{I}=R.

Napięcie na końcach indukcyjności równe jest

U=L\dfrac{dI}{dt},

co Heaviside w swoim języku symbolicznym zapisywał jako U=LpI (p oznaczało branie pochodnej po czasie). Dla pojemności mamy natomiast

I=\dfrac{dQ}{dt}=C\dfrac{dU}{dt}=CpU.

gdzie Q jest ładunkiem.

Stosunki napięcia do natężenia są zastępczymi oporami, mamy więc dla indukcyjności Lp, a dla pojemności 1/pC. Ponieważ możemy podzielić naszą linię transmisyjną na dowolnie dużą liczbę powtarzających się segmentów o długości \Delta x, więc dodanie kolejnego segmentu nie powinno zmieniać zastępczego oporu. Opór zastępczy całej linii Z (wejściowy) musi w takim razie być tym samym, co połączenie równoległe elementów G\Delta x, C\Delta x oraz (R+Lp)\Delta x + Z na końcu. W połączeniu równoległym dodają się odwrotności oporów, mamy więc

\dfrac{1}{Z}=(G+pC)\Delta x+\dfrac{1}{(R+pL)\Delta x+Z}.

Po przekształceniach dostajemy równanie kwadratowe na opór zastępczy:

Z^2+(R+pL)\Delta x Z=\dfrac{R+pL}{G+pC}.

Jeśli teraz przyjmiemy, że \Delta x\rightarrow 0, to otrzymamy

Z^2=\dfrac{R+pL}{G+pC}.

Otrzymany wynik wygląda odrobinę dziwnie, jeśli przypomnimy sobie, że p to różniczkowanie. Nie jest jasne, jak powinniśmy dzielić przez p i jak wyciągać pierwiastek. Heaviside szedł za swoim formalizmem tak daleko, jak tylko się dało i rozpatrywał wyrażenia takie, jak np. p^{\frac{1}{2}}. Uważał on matematykę za naukę empiryczną i jak mówił: „Czy mam odmówić zjedzenia obiadu, ponieważ nie znam wszystkich szczegółów trawienia?” My nie musimy iść aż tak daleko. Widać z ostatniego wyrażenia, że gdy spełniony będzie warunek

\dfrac{R}{G}=\dfrac{L}{C},

nasz ułamek się skróci (cokolwiek to znaczy) i nie będzie zawierał p, w takiej sytuacji sygnał o dowolnym kształcie nie ulegnie zmianie. Jest to warunek Heaviside’a. W praktyce znaczył tyle, że indukcyjność L należy powiększyć, czego nie rozumiał Preece. Dodać należy, że Heaviside formułował tę swoją matematykę także w konwencjonalny sposób – był może dziwakiem, ale w kwestii technik matematycznych zachowywał się całkiem racjonalnie. Obecnie stosuje się transformaty Laplace’a albo można sobie wyobrażać, że zależność od czasu ma postać \exp(i\omega t) (gdzie \omega to częstość kołowa), wówczas różniczkowanie sprowadza się do mnożenia i mamy po prostu p=i\omega.

 

 

 

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.