Szczęśliwy rok Erwina Schrödingera (1926)

W listopadzie 1926 roku seria sześciu ostatnich prac Schrödingera ukazała się w wydaniu książkowym. Jak sam pisał we wstępie do tego przedruku:

Młoda przyjaciółka powiedziała o nich niedawno: „Popatrz, kiedy je zaczynałeś, nie myślałeś w ogóle pojęcia, że wyjdzie z nich tak wiele sensownych rzeczy”. Powiedzenie to, z którym (prócz pochlebnego przymiotnika) w pełni się zgadzam, podkreśla fakt, że prace zebrane w tym tomie powstawały jedna po drugiej. Ich autor, pisząc wcześniejsze części, nie znał jeszcze części późniejszych.

Erwin Schrödinger stał się dzięki nim sławny i choć także wcześniej i później tworzył prace interesujące bądź nawet wybitne, żadna z nich nie dorównywała tej złotej serii.

Ową przyjaciółką była czternastoletnia Itha Junger („Ithi”). Ich dziadek Georg Junger był bogatym obywatelem Salzburga, właścicielem firmy zajmującej się handlem hurtowym. Interes prowadzili nadal jego dwaj synowie, to jeden z nich, Hans, był ojcem dwóch niejednakowych bliźniaczek: Ithy i Roswithy, uczęszczających do szkoły klasztornej. Mówiło się, że matka żony Schrödingera Anny była nieślubną córką Georga Jungera. W każdym razie obie rodziny były blisko i żona Hansa była matką chrzestną Anny. Itha miała kłopoty z matematyki, Anny zaproponowała, że Erwin mógłby pomóc, bliźniaczki przeniesiono do klasztoru blisko Zurychu, żeby mogły korzystać z korepetycji. Erwin bardzo się z nimi zaprzyjaźnił, a wkrótce i zakochał w Ithi. Ich osobliwy, nawet w tych swobodnych czasach, romans trwał wiele lat, związek został skonsumowany wkrótce po siedemnastych urodzinach Ithi.

Mechanika kwantowa Heisenberga i jego kolegów z Getyngi przyjmowana była z mieszanymi uczuciami przez środowisko fizyków. Przeskoki kwantowe, abstrakcyjny formalizm macierzowy, filozofia ograniczenia się tylko do wielkości bezpośrednio obserwowalnych i porzucenia raz na zawsze poglądowych wyobrażeń atomu – wszystko to traktowane było z rezerwą. Podejście Schrödingera wydawało się nie tylko bardziej zrozumiałe matematycznie, ale także umożliwiało wyobrażenie sobie, co właściwie dzieje się wewnątrz układów o skali atomowej. Schrödinger wykazał także, że przynajmniej w prostych sytuacjach oba podejścia są równoważne. Mimo to, Heisenberg wykazywał wobec „mechaniki falowej” postawę wrogą i nieprzejednaną. Jego mentor, Niels Bohr, zaprosił Schrödingera do Kopenhagi, gdzie zadręczał wręcz swojego gościa, atakując jego sposób myślenia.

Dla zwolenników Bohra elektron był punktową cząstką, a prawa kwantowe dotyczyły tylko prawdopodobieństw. Historia przyznała im rację, choć pewne problemy interpretacyjne mechaniki kwantowej pozostały do dziś. Trzeba jednak wyraźnie powiedzieć, że jak dotąd żaden eksperyment nie zaprzeczył prawom mechaniki kwantowej, „szara strefa” dotyczy raczej filozoficznego samopoczucia. Wciąż nie znamy wszystkich szczegółów przejścia z poziomu mikroświata do makroświata, w którym żyjemy i w którym powstała fizyka klasyczna.

Błyskawiczna kariera Schrödingera wiązała się z tym, że dla konserwatywnie nastawionych fizyków, jego podejście wydawało się łatwiejszą do przyjęcia wersją teorii kwantowej. Schrödinger został zasypany listami i zaproszeniami od luminarzy ówczesnej fizyki: od sędziwego Hednrika Lorentza, przez Maksa Plancka, Alberta Einsteina aż do Wilhelma Wiena i Arnolda Sommerfelda. Został członkiem bardzo elitarnego grona: Planck gościł go w swoim domu podczas wizyty w Berlinie. Dobiegający siedemdziesiątki i wieku emerytalnego Planck niewątpliwie myślał przy tym o przyszłości swojej katedry w Berlinie, najbardziej prestiżowego stanowiska w dziedzinie fizyki teoretycznej na świecie. Niedługo później Schrödinger trafił na krótką listę kandydatów i uzyskał to stanowisko. Uznano przy tym, że Werner Heisenberg, choć niewątpliwie genialny, jest po prostu jeszcze za młody na katedrę. Schrödinger odbył też podróż do Stanów Zjednoczonych, stając się jednym z długiego szeregu wizytujących sław europejskich. Amerykanie nie byli jeszcze potęgą w fizyce teoretycznej, ale starali się kusić wysokimi honorariami, uzyskując przynajmniej tyle, że odwiedzali Stany Zjednoczone wszyscy właściwie wybitni fizycy i matematycy. Schrödinger też dostał oferty pracy w USA, ale nie rozpatrywał ich poważnie. Ameryka mu się nie podobała, duch purytański, przejawiający się w owych latach, m.in. w prohibicji, wydawał mu się barbarzyństwem. Na widok Statui Wolności miał powiedzieć, że brakuje jej tylko zegarka na ręku.

William F. Meggers Gallery of Nobel Laureates

Erwin Schrödinger bronił w roku 1926 i później stanowiska, że elektron nie jest punktową cząstką, lecz raczej pewnym rozmytym obiektem. Stanowisko to nie dało się obronić. Przedstawimy jeden z argumentów Schrödingera. Jest on prawdziwy, lecz sytuacja, której dotyczy, okazała się nietypowa. Nie można było tego jednak wiedzieć latem 1926 roku.

Rozpatrzmy oscylator harmoniczny, czyli cząstkę oscylującą wokół minimum energii potencjalnej. Ponieważ każdą funkcję wokół minimum można w przybliżeniu uważać za parabolę, więc jest sens rozważać przypadek kwadratowej, czyli parabolicznej, energii potencjalnej. Rozwiązanie równania Schrödingera daje nam wówczas następujące funkcje falowe.

skrypt Sagemath do generowania obrazka

Są to drgania o różnych dopuszczalnych energiach (nieparzyste wielokrotności wielkości \frac{1}{2}\hbar \omega, gdzie \omega jest częstością kołową naszego oscylatora). Klasycznie biorąc, obszar położony poza przecięciem potencjału z poziomą prostą danej energii całkowitej jest niedostępny; cząstka nie może się tam znaleźć, ponieważ musiałaby mieć ujemną energię kinetyczną. W fizyce kwantowej funkcja falowa rozlewa się poza ten klasycznie dostępny obszar, co jest tzw. zjawiskiem tunelowym. Każdy z tych stanów stacjonarnych ma bardzo prostą zależność od czasu. Należy funkcję z wykresu pomnożyć przez czynnik

\exp(-i\frac{Et}{\hbar})=\exp(-i\omega(n+\frac{1}{2})t).

Znaczy to, że zależność od czasu jest trywialna, nic się w naszej funkcji falowej nie porusza, opisane stany są falami stojącymi. Schrödinger zauważył, jak ze stanów o ustalonej energii zbudować rozwiązanie równania, które opisuje drgania w czasie. W gruncie rzeczy jest to bardzo proste. Chcąc zapoczątkować drgania oscylatora, wystarczy wychylić jego masę z położenia równowagi, a następnie puścić ciężarek, który zacznie wykonywać oscylacje.

Można analogicznie, wziąć funkcję falową stanu podstawowego oscylatora

\Psi_0(x)=C\exp(-\frac{x^2}{2}),

a następnie przesunąć ją do jakiegoś nowego położenia x_0:

\Psi(x)=C\exp(-\frac{(x-x_0)^2}{2}),

Jeśli tę ostatnią funkcję potraktujemy jako warunek początkowy w równaniu Schrödingera, to otrzymamy funkcje opisujące paczkę falową poruszającą się oscylacyjnie wokół położenia równowagi. W pracy Schrödingera („Naturwissenschaften”, 1926) przedstawiona została jej część rzeczywista:

Jest to zdjęcie migawkowe, paczka falowa będzie bowiem oscylować wokół położenia równowagi. Zdaniem Schrödingera ta właśnie fala jest elektronem. Ponieważ ciągle traktował on liczby zespolone jako wypadek przy pracy, więc wziął cząść rzeczywistą rozwiązania.

Wiemy jednak, że rację miał tu Max Born: należy obliczyć kwadrat zespolonego modułu funkcji falowej i jego wielkość określa rozkład prawdopodobieństwa. Otrzymamy wówczas klasyczne drgania rozmytej funkcji falowej.

Wikimedia Commons

Nie jest to jednak elektron, lecz prawdopodobieństwo jego znalezienia w danym miejscu i czasie. Dziś stany takie znane są jako stany koherentne. Przypadek oscylatora jest wyjątkowy: na ogół taka zlokalizowana funkcja falowa rozmywa się w czasie, choć w niektórych przypadkach może się później odbudowywać, jak na poniższym obrazku (chodzi tu o wysokowzbudzone stany atomu wodoru: mogą one przez chwilę przypominać klasyczny elektron na orbicie Bohra, potem ten obraz się rozmywa.

Mamy tu trzydzieści keplerowskich obiegów elektronu zbudowanych ze stanów wokół n=180

Erwin Schrödinger nie pogodził się z kopenhaską interpretacją mechaniki kwantowej, stał się jednym z jej krytyków, podobnie jak Einstein poszukujących innej drogi. Romans z Ithi kontyuowany był w latach berlińskich, w jakimś momencie uczony chciał się nawet z nią ożenić, ale do tego nie doszło. Po roku 1933 nie chciał zostać w nazistowskich Niemczech (co było dość wyjątkowe, ponieważ nie był Żydem i nie musiał rezygnować), wrócił na trochę do Austrii, ale wskutek Anschlussu także Austria stała się brunatna. Jego późniejsze afery uczuciowo-erotyczne stanowiły przeszkodę w objęciu katedr w Oxfordzie i Princeton, ostatecznie znalazł sobie miejsce w katolickiej Irlandii.

Stanisław Ulam (2/2)

Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw. [S. Ulam]

Każdego roku, od 1936 aż do 1939, Stanisław Ulam spędzał lato w Polsce. Spotykał się ze swoimi matematycznymi przyjaciółmi, w tym Banachem i Mazurem, we Lwowie albo gdzieś w okolicach, gdzie spędzali wakacje. Jego dorobek matematyczny obejmował szereg dziedzin: teorię mnogości, teorię miary i rachunek prawdopodobieństwa, teorię transformacji, teorię grup. Były to na ogół niewielkie prace rozwiązujące lub stawiające jakiś problem. Na uniwersytecie Harvarda we współpracy z Johnem Oxtobym Ulam napisał swoją najdłuższą pracę, opublikowaną następnie w „Annals of Mathematics”, wysoko cenionym piśmie wydawanym w Princeton. Praca dotyczyła teorii ergodycznej. W mechanice klasycznej każdy nietrywialny układ fizyczny wędruje po swojej przestrzeni stanów (in. przestrzeni fazowej) w taki sposób, że wraca kiedyś w sąsiedztwo każdego punktu już odwiedzonego. Fakt ten jest podstawą fizyki statystycznej, w której zakłada się, że wszystkie stany o określonej energii są jednakowo prawdopodobne. Praca Ulama i Oxtoby’ego dowodziła, że przekształcenia spełniające warunek ergodyczności są w pewnym sensie typowe. Uzyskany przez nich wynik nie mógł być wprost zastosowany do fizyki, ale tak jest bardzo często: ścisłe potwierdzenie intuicji fizyków zazwyczaj nie jest łatwe.

Stanisław Ulam łatwo przywykł do amerykańskiego życia i z przyjemnością wracał do niego po wakacjach. Latem 1939 roku zabrał ze sobą młodszego brata, Adama. Na statek w Gdyni odprowadzili ich ojciec i stryj. Widmo wojny wisiało nad Polską, choć, jak zauważył Ulam, zagrożenie to wyraźniej dostrzegano w Stanach Zjednoczonych niż w Polsce, gdzie do ostatniej chwili łudzono się nadziejami na jakiś zwrot dyplomatyczny w zaostrzającym się napięciu. Różnice w sposobie oceny wynikały zapewne nie tylko z dystansu Amerykanów. Do Stanów Zjednoczonych dotarło w ostatnich latach wielu uchodźców z Niemiec, którzy lepiej niż inni rozumieli istotę nazistowskiego reżimu. W Polsce prasa, koła wojskowe i politycy zgodnie uprawiali propagandę w stylu „nie oddamy ani guzika”, co skończyło się klęską nie tylko militarną i polityczną, ale także klęską moralną – kraj był bowiem zupełnie nieprzygotowany do wojny i tysiące, może miliony ludzi, rzuciły się do panicznej i bezładnej ucieczki: jedni na wschód, inni na zachód. Dowódcy niemieccy zdumieni byli łatwością tego zwycięstwa, które po dwu tygodniach było już w zasadzie zupełne.

Dla Stanisława Ulama wojna oznaczała nie tylko lęk o najbliższych i przyjaciół pozostawionych w kraju, ale i obowiązek utrzymywania młodszego brata, który zaczął jesienią studia (z czasem został znanym sowietologiem). Znalezienie płatnej pracy akademickiej nie było łatwe, Ulam musiał zadowolić się uniwersytetem stanu Wisconsin w Madison. Po Harvardzie i Princeton nie było to wymarzonym rozwiązaniem, jednak uczelnia okazała się całkiem przyzwoita, Ulam zaprzyjaźnił się tam z wieloma wykładowcami, nie tylko zresztą z matematykami, ale i z fizykami, ekonomistami. Wygłosił kiedyś zaimprowizowany wykład na zjeździe astronomów (na temat wyboru układu odniesienia, w którym ruch ciał wygląda prościej – była to topologiczna wersja problemu kopernikańskiego). W tym okresie wielu wybitnych uczonych, zwłaszcza pochodzących z Europy, pracowało na mniejszych uczelniach, fala emigracji wywołała bowiem nadmiar szukających pracy akademików. W Madison pracował Eugene Wigner, fizyk i szkolny kolega von Neumanna, przyszły noblista. Na seminaria prowadzone przez Ulama przyjeżdżali do Madison matematycy tej klasy co André Weil, urodzony w Warszawie Samuel Eilenberg czy Paul Erdös, wszyscy oni stali się sławami światowego formatu. Erdös zaprzyjaźnił się z Ulamem i odwiedzał go czasami, rozmowy były jego ulubioną formą pracy matematycznej, z czasem opublikował wspólne prace z kilkuset innymi badaczami. Matematycy obliczają liczbę Erdösa: on sam ma liczbę zero; ci, którzy z nim pracowali, mają liczbę jeden; ci, którzy pracowali z posiadającymi liczbę jeden, mają liczbę dwa itd. Oczywiście, Ulam miał liczbę Erdösa równą jeden. Zabawa ta unaocznia, jak silną rolę odgrywa współpraca nawet w dziedzinie tak z pozoru indywidualnej jak matematyka (choć trzeba też dodać, że Erdös, podobnie jak Ulam, wyjątkowo lubił pracę w towarzystwie innych).

W 1941 roku Ulam otrzymał obywatelstwo amerykańskie i kiedy Stany Zjednoczone przystąpiły do wojny, chciał pracować na rzecz wojska. Dzięki rekomendacji von Neumanna trafił do Los Alamos i Projektu Manhattan jako jeden z niewielu matematyków. Spotkał tam i poznał osobiście wielu fizyków i chemików o głośnych nazwiskach, nigdy chyba w historii nie zgromadzono w jednym miejscu w pracy nad wspólnym projektem tak wielu wybitnych specjalistów. Wielu z nich było emigrantami, których dotychczasowe życie zburzył mniej lub bardziej nazizm. Wśród kierujących projektem byli dwaj znakomici fizycy jądrowi: Hans Bethe i Enrico Fermi. Pierwszy miał babkę Żydówkę, przez co stracił profesurę w Tybindze, drugi miał za żonę Żydówkę i w roku 1938 zmuszony był opuścić Włochy. Ulam obu uczonych bardzo szanował, lecz szczególny respekt budził w nim Fermi – ostatni chyba fizyk będący zarazem eksperymentatorem i teoretykiem. Nie rozstający się z suwakiem logarytmicznym Fermi, który umiał szybko obliczyć każdą potrzebną wielkość, miał też solidne przygotowanie matematyczne i okazało się, że zna np. pracę Oxtoby’ego i Ulama. Dzięki Projektowi Manhattan Stanisław Ulam zaczął pracować z fizykami i tak już miało zostać przez długie lata. Jego talent matematyczny niespodziewanie okazał się przydatny w zagadnieniach z pogranicza inżynierii. Taki przeskok z podstaw matematyki do zagadnień praktycznych byłby niewyobrażalny dla większości matematyków. Ulam trafił do grupy kierowanej przez Edwarda Tellera, jeszcze jednego emigranta z Węgier. Pierwszym zagadnieniem, którym się tam zajął, było oddziaływanie gazu elektronowego z promieniowaniem. Teller uzyskał z rozważań wymiarowych postać równania, chciał aby te rozważania uściślić. Ulam zaproponował własne dość elementarne rozwiązanie, z którego wynikało, że wzór Tellera trzeba uzupełnić współczynnikiem cztery. Niezadowolony Teller zlecił to samo zadanie komuś innemu, kto posługując się znacznie bardziej rozbudowanym aparatem matematycznym, uzyskał dla owego współczynnika liczbowego także wartość zbliżoną do czterech.

Ulam, Richard Feynman i John von Neumann w Los Alamos

Rodzaj talentu matematycznego Stanisława Ulama był nietypowy, jedyny w swoim rodzaju. Posiadał on dar formułowania problemów w sposób jak najprostszy, zachowując jedynie najistotniejsze ich cechy. Wyobrażał sobie przy tym zjawiska, a nie tylko równania, które je opisują. Łatwo też przychodziły mu oszacowania liczbowe, co w Los Alamos było niezwykle ważne – nie chodziło tam przecież o zrozumienie idealnej sytuacji laboratoryjnej, ale o skonstruowanie jak najefektywniejszej bomby. Należało więc wejść w świat rzeczywistych obiektów, kształtów, własności różnych materiałów, współwystępowania rozmaitych zjawisk. Zazwyczaj praca fizyków polega na czymś odwrotnym: szuka się najprostszych i „najczystszych” sytuacji, w których można zmierzyć dane zjawisko.

Po zakończeniu wojny i Projektu Manhattan Stanisław Ulam wrócił do pracy akademickiej. Został profesorem nadzwyczajnym na Uniwersytecie Południowej Kalifornii (USC). Uczelnia okazała się słaba, Los Angeles było miastem trudnym do mieszkania i poruszania się z powodu korków ulicznych. Pewnego dnia Ulam poważnie zachorował, zaczął mieć problemy z mówieniem. Przeprowadzono operację, otwierając czaszkę. Znaleziono ostry stan zapalny, który leczono nowymi wówczas antybiotykami, podawanymi bezpośrednio do wnętrza czaszki. Uczony po pewnym czasie doszedł do siebie, jednak z obawą myślał, czy po tym wszystkim jego umysł wróci do dawnej sprawności. Przekonał się o tym, kiedy odwiedził go Paul Erdös. Zagrali w szachy i Ulam wygrał. Zaczął podejrzewać, że może przyjaciel pozwolił mu wygrać dla podtrzymania go na duchu. Zagrali więc jeszcze raz. Uspokoił się dopiero, kiedy wygrał po raz drugi, a Erdös wyraźnie się tym zirytował.

Nie pozostał na USC długo, tym bardziej że po chorobie wpadł w długi. Otrzymał propozycję pracy w Los Alamos dla armii amerykańskiej. Wprawdzie sławni i wielcy po zakończeniu Projektu Manhattan rozjechali się po różnych ośrodkach, ale laboratorium w Los Alamos zostało i nieoczekiwanie dawało Ulamowi możliwość ciekawej i względnie niezależnej pracy. Problemy, nad którymi tam pracowano, były konkretne, co zdaniem Ulama bardzo się liczyło. Sądził on bowiem, że naprawdę ważne problemy wywodzą się z praktyki, a nie filozoficznych rozważań. Mógł dobierać sobie współpracowników, co było szczególnie ważne wobec jego metody pracy. Polegała ona na tym, że Ulam szkicował możliwości rozwiązania danego zagadnienia, a współpracownicy starali się te pomysły zrealizować. Niewykluczone, że przebyta choroba odebrała Ulamowi czysto techniczną sprawność dokonywania obliczeń czy prowadzenia jakiegoś długiego dowodu. Starał się tego po sobie nie pokazywać. Pozostała mu jednak wyobraźnia i umiejętność dostrzegania bez dowodu, czy twierdzenie jest prawdziwe, czy nie, i w jaki sposób można dążyć do wytyczonego celu. Toteż pracował przede wszystkim nad wytyczaniem kierunków i formułowaniem problemów – co w sumie jest może ważniejsze niż szczegółowe rozwiązania. Przypominał swoim stylem pracy pracującego po przeciwnej stronie Atlantyku Jakowa Zeldowicza.

Dzięki pracy dla armii Ulam należał do pionierów stosowania komputerów. Układając pewien trudny pasjans w okresie rekonwalescencji, zdał sobie sprawę, że bardzo trudno byłoby obliczyć, jakie jest prawdopodobieństwo ułożenia tego pasjansa, łatwo natomiast można by go było modelować za pomocą komputera, który mógłby przeprowadzić wiele prób, dzięki czemu można by empirycznie stwierdzić, jakie jest szukane prawdopodobieństwo. Rozwinięciem tej idei opracowanym we współpracy z von Neumannem i Nickiem Metropolisem są metody Monte Carlo (nazwa zaczerpnięta ze skojarzenia z wujem Ulama, który pożyczał od krewnych pieniądze i następnie przepuszczał je w Monte Carlo). Zamiast np. rozwiązywać równanie różniczkowe, opisujące dyfuzję neutronów z pewnego stanu początkowego, możemy prześledzić losy wielu neutronów i zobaczyć, jakie są charakterystyczne cechy ich rozkładu. Dla pięćdziesięciu cząstek startujących z punktu x=0 tory w błądzeniu przypadkowym mogą być np. takie jak na wykresie.

Po zebraniu pewnej statystyki można znaleźć kształt rozkładu końcowego. Im więcej wykonamy losowań, tym dokładniej będziemy znali rozkład cząstek po danym czasie.

Rozkład uzyskany w tym przypadku jest łatwy do obliczenia analitycznego (jest rozkładem normalnym). Wystarczy jednak nieco zmodyfikować zagadnienie: dodać dwa wymiary, różne kształty i materiały, a problem dyfuzji stanie się bardzo trudny do rozwiązania metodami analitycznymi, choć symulacja komputerowa nadal będzie stosunkowo prosta. Pionierzy tej metody musieli zaczynać kompletnie od zera, rozwiązując np. zagadnienie, jak komputer, który prowadzi obliczenia arytmetyczne na liczbach – a więc otrzymując zawsze ściśle określony i jednoznaczny wynik, może generować liczby losowe. Jak sprawić, aby liczby te podlegały określonemu prawu statystycznemu? Jak sprawdzać uzyskane wyniki itd itp. Metoda Monte Carlo używana jest dziś w wielu dziedzinach od fizyki do finansów i stała się zespołem wyspecjalizowanych praktyk.

Stanisław Ulam odegrał istotną rolę w projekcie bomby wodorowej. Była to idée fixe Tellera: zbudować bombę opartą na procesie syntezy lekkich pierwiastków w cięższe. W przyrodzie procesy takie odbywają się we wnętrzu gwiazd, gdzie panują ogromne temperatury i materia jest bardzo gęsta. Warunki tak ekstremalne potrzebne są do tego, by dodatnio naładowane jądra mogły zbliżyć się do siebie, pokonując odpychanie elektrostatyczne. Dopiero bowiem w odległościach rzędu 10^{-15} m możliwe jest przegrupowanie nukleonów, wskutek czego wyzwala się energia.

Synteza helu z dwóch izotopów wodoru: deuteru i trytu; bomby wykorzystują głównie deuter (rys. Wikipedia)

Warunki takie można by wytworzyć za pomocą wstępnego wybuchu zwykłej bomby atomowej. Edward Teller (jeszcze jeden żydowski emigrant z Węgier) pracował nad pomysłem „superbomby” już w trakcie Projektu Manhattan. Nie zrezygnował z niego także i później. W roku 1950 prezydent Harry Truman podjął decyzję o pracach nad superbombą. Okazało się jednak szybko, że początkowy pomysł Tellera nie nadaje się do realizacji. Udowodnił to Stanisław Ulam ze współpracownikami, potwierdziły zaś obliczenia Ulama i Enrico Fermiego. Także obliczenia komputerowe von Neumanna dawały ten sam wynik. Sytuacja stała się trudna dla Tellera, którego oskarżano, że nakłonił władze polityczne do decyzji, nie mając w ręku żadnej rozsądnej teorii działania superbomby. Koszt przedsięwzięcia był ogromny, rywalizacja z Rosją zawzięta, a więc i stawka projektu bardzo wysoka. Impas przełamał Stanisław Ulam, który zaproponował implozyjny mechanizm działania superbomby. Razem z Tellerem napisali raport, który stał się podstawą amerykańskiego projektu. Bomba została zbudowana, lecz stosunki miedzy Tellerem a Ulamem gwałtownie się oziębiły. Teller nie potrafił prawdopodobnie wybaczyć Ulamowi dwukrotnej porażki prestiżowej. Ulam natomiast uważał, że zainteresowani i tak wiedzą, ile kto jest wart.

Raport Tellera i Ulama został po latach odtajniony, lecz większość z kilkunastu jego stron jest kompletnie pusta. Armia amerykańska najwyraźniej uznała, że wciąż jest za wcześnie na publiczne informowanie o technologii bomb wodorowych. Może to być zresztą także przykład nadmiernej ostrożności wojskowych w kwestiach tajemnic, militarne znaczenie bomb wodorowych nie jest bowiem aż tak wielkie, jak sądzono na początku. Dalsze prace szły raczej nad zmniejszaniem siły rażenia, bo co po wygranej wojnie, skoro zwycięzcy zostaną w niej zabici powiedzmy dziesięć razy, a pokonani – dwadzieścia. Angielszczyzna ma na to zgrabne słówko: overkill (*).

Gian-Carlo Rota charakteryzuje Ulama następująco:

Dopiero po kilku latach zdałem sobie sprawę z tego, co jest prawdziwą profesją Stana Ulama. Wielu z nas, pracujących w Laboratorium i mających z nim styczność, wiedziało, jak bardzo nie lubi on zostawać sam, że wzywa nas o zaskakujących porach, by wybawić go od samotności hotelowego pokoju albo czterech ścian swego gabinetu, kiedy już skończył codzienną rundę rozmów międzymiastowych.

Pewnego dnia zebrałem się na odwagę i zapytałem, czemu stale potrzebuje towarzystwa; odpowiedź, jakiej udzielił była wielce znamienna. „Kiedy jestem sam – zwierzył się – zmuszony jestem przemyśleć różne rzeczy i widzę ich tak wiele, że wolę nie myśleć”. Ujrzałem go wtedy w prawdziwym świetle: ten człowiek, mający na koncie największą liczbę trafnych przypuszczeń w matematyce, który potrafi pokonać inżynierów na ich własnym polu, który w jednej chwili ocenia zdarzenia i ludzi, należy do niemal już doszczętnie wymarłej profesji proroków.

Z mężami Starego Testamentu i wyrocznią delficką dźwigał on ciężkie brzemię natychmiastowego widzenia. I jak wszyscy zawodowi prorocy cierpiał na coś, co Sigmund Freud nazwałby „kompleksem Proteusza”. Wielka szkoda, że wśród pacjentów Freuda nie było żadnych proroków.

W dawnych czasach ciemne orzeczenia Sybilli interpretowane były przez wyszkolonych specjalistów, tak zwanych hermeneutów, których zadaniem było przełożenie kryptycznych fraz na greckie zdania. W przypadku Ulama laboratorium w Los Alamos wynajmowało konsultantów, których zadaniem było wyrażenie jego kryptycznych komunikatów w popsutym żargonie współczesnej matematyki.

Stanisław Ulam zmarł niespodziewanie w wieku 75 lat na atak serca. Jak pisze Françoise Ulam:

mawiał, że „najlepszym rodzajem śmierci jest nagły atak serca lub zastrzelenie przez zazdrosnego męża”. Miał szczęście umrzeć w ten pierwszy sposób, choć myślę, że chyba wolałby ten drugi.

(*) Ulam komentował w roku 1965: „Mam wrażenie, iż to interesujące pojęcie, jakim jest overkill, przez lewicę atakowane jest z powodu marnotrawstwa – jako nieekonomiczne, podczas gdy skrajna prawica popiera je z przyczyn psychologicznych: gdyż daje im poczucie męskości, której brak odczuwają.”

Toczyła się wówczas debata, czy Stany Zjednoczone powinny zgodzić się na zakaz prób jądrowych. Ulam i Teller stali na odmiennych stanowiskach, ilustruje to rysunek Herblocka: „Mądry ojciec zna swoje własne dziecko”.

Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.

Księżyc i Robinson Jeffers

Minęło już sześć lat, jak prowadzę ten blog. Z tej okazji zamieszczam tu raz jeszcze jeden z pierwszych wpisów, z października 2012 roku.

Robinson Jeffers, 1957:
Głęboka Rana

Kiedy zbliżyła się gwiazda, potężny przypływ
Wezbrał pod płynną skorupą Ziemi,
Wciąż narastając, kiedy przechodziła w pobliżu. Gwiazda wydarła z Ziemi
Grzbiet wielkiej fali: Księżyc został wydarty
Z basenu Pacyfiku: ów zimny biały kamień, rozświetlający nasze noce.
Pozostała po nim w Ziemi głęboka rana, Pacyfik,
Ze wszystkimi wyspami i okrętami. Kiedy tu stoję na klifie,
Słyszę rozdzieranie na wpół zastygłego bazaltu i granitu, widzę tego ogromnego ptaka,
Jak usiłuje wzbić się ku swojej gwieździe. Lecz gwiazda odpłynęła,
A Księżyc pozostał, zataczając kręgi nad swoim dawnym domem,
Ciągnąc za sobą przypływy, wynędzniały, samotny.

Matematycy i fizycy
Mają swą własną mitologię; poruszają się równolegle do prawdy,
Nie dotykając jej nigdy; ich równania są fałszywe,
Lecz jednak działają. A kiedy pojawi się rażący błąd,
Wymyślają sobie nowe; porzucając teorię fal
W eterze wypełniającym świat na rzecz zakrzywionej przestrzeni.
Jednak to ich równania zbombardowały Hiroszimę.
Piekielna rzecz zadziałała.

Także poeta ma
Swoją własną mitologię. Opowiada, że Księżyc powstał
Z wód oceanu. Opowiada, że Troja została spalona z powodu zabłąkanej
Pięknej kobiety, a jej twarz wprawiła w ruch tysiąc okrętów.
To niezbyt prawdopodobne, chociaż mogło tak być; jednak kościół i państwo
wspierają się na jeszcze bardziej osobliwych i niemożliwych mitach:
Jak ten, że wszyscy ludzie rodzą się wolni i równi: tylko pomyśl!
I że wędrowny hebrajski poeta o imieniu Jezus
Jest Bogiem całego wszechświata. Tylko pomyśl!

Oryginał angielski i rosyjski przekład

Z poezją Robinsona Jeffersa zetknąłem się dzięki przekładom i komentarzom Czesława Miłosza. Miłosz zafascynowany był autentycznością widzenia i przeżywania świata poety, który spędził większość życia mieszkając w odosobnieniu nad brzegiem Pacyfiku w Big Sur. Widział tam przede wszystkim świat pozaludzki, sceptycznie i nieco wyniośle traktując wojny, które dosłownie i w przenośni toczyła w tym czasie ludzkość. Starał się nie ulegać większości zbiorowych zaślepień. W jakimś sensie Jeffers był poetą religijnym, choć bez Boga – zjawisko chyba nierzadkie u protestantów. Jeffers, podobnie jak np. Ingmar Bergman, wychowywany był przez protestanckiego pastora.
Poezja potrzebuje mitologii. Nieliczne są przykłady wybitnych poetów, którzy nie byliby zanurzeni po czubek głowy w świecie wyłącznie i jedynie ludzkim, w kościele międzyludzkim. Jedną z najcenniejszych wartości nauki jest w moim pojęciu właśnie to, że pozwala wykroczyć poza ograniczenia gatunku, plemienia, stada. Gdyby odwiedzili nas przedstawiciele innej cywilizacji, najłatwiej byłoby się chyba porozumieć w takich kwestiach, jak równania teorii grawitacji Einsteina czy Model Standardowy cząstek, choć może z ich punktu widzenia byłyby to teorie antyczne.
Z wymienionych powodów trudno jest o poezję, która odwołuje się do naukowego obrazu świata. Właściwie od czasów Lukrecjusza niewiele stworzono w tej dziedzinie, a jeśli już coś pisano, to zwykle było to zacne i mierne. Nie dotyczy to z pewnością Jeffersa.
Poeta mówi o możliwości powstania Księżyca, odwołując się, jak sądzę, do teorii powstawania planet Jeansa. Układy planetarne miały powstawać, gdy jakieś dwie gwiazdy znajdą się na tyle blisko siebie, że siły przypływowe odrywają od nich część materii, z której następnie tworzą się planety. Taka koncepcja oznaczała, że powstawanie planet jest rzadkością, Jeans pisał o przypadku takim, jak spotkanie się na pełnym oceanie dwóch statków. Wiemy dziś, że planety powstają dużo częściej i razem z gwiazdami. Więcej, znamy już całe mnóstwo planet, które dawniej były po prostu niemożliwe do wykrycia: bo są ciemne, małe, i zawsze niezwykle blisko oślepiająco jasnej gwiazdy.
Jednak Księżyc rzeczywiście jest częścią Ziemi, oderwaną od zewnętrznych warstw naszej planety przez zderzenie z planetą wielkości Marsa. Pewne szczegóły tego scenariusza opisują Matija Cuk z SETI Institute w Mountain View (Kalifornia) i Sarah Stewart z Harvardu w numerze „Science” z 17 X 2012. Inną możliwość przedstawiła Robin Canup z Southwest Research Institute w Boulder (Kolorado). Byłoby to zderzenie dwóch mniej więcej jednakowych planet. Ilustracja z pracy Canup może stanowić naukowe pendant do wiersza Jeffersa. Księżyc powstałby jakiś czas później z rozproszonej materii, która otacza nowopowstałą Ziemię na ostatnim obrazku.

Nie zgadzam się natomiast z Jeffersem co do fałszywości równań fizyki. Oczywiście nie zawierają one całej prawdy (w tym sensie są „fałszywe”), nie będą jej też nigdy zawierały (a więc są „równoległe”). Jest to jednak najlepsza prawda dostępna nam na Ziemi. I nie wierzę, abyśmy mieli dostęp do jakiejkolwiek innej. Prawda naukowa jest na tyle obiektywna, że moglibyśmy się na jej temat porozumieć z kosmitami, choć zapewne we wszystkich kwestiach nacechowanych kulturowo próby porozumienia kończyłyby się zupełnym fiaskiem.
Co do proroka o imieniu Jezus, zastanawiam się czasem, jakby zareagował, gdyby rzeczywiście pojawił się drugi raz na Ziemi i spotkał dzisiejszych kapłanów swego kultu. Która strona byłaby bardziej wstrząśnięta tym spotkaniem?

Erwin Schrödinger: trzeci początek mechaniki kwantowej (1926)

Równanie Schrödingera zasługuje na swoją sławę: dzięki niemu znamy nie tylko budowę atomów, ale i cząsteczek chemicznych czy ciał skondensowanych. Wynikają z niego najprzeróżniejsze własności materii, która nas otacza, a także materii we wszechświecie. Jest więc równaniem niezwykle istotnym tak dla fundamentów fizyki, jak i dla zastosowań.

Autor najsłynniejszego równania dwudziestowiecznej fizyki aż do roku 1926 nie należał do ścisłej czołówki fizyków teoretycznych. Zaledwie osiem lat młodszy od Einsteina, dopiero od 1921 roku zajmował katedrę na uniwersytecie w Zurychu. Studiował w Wiedniu, zbyt późno by zetknąć się osobiście z Ludwigiem Boltzmannem czy Ernstem Machem, choć wpływ obu tych uczonych wciąż dawał się tam odczuć. Fizyki teoretycznej uczył się u Friedricha Hasenöhrla, bliskiego przyjaciela Mariana Smoluchowskiego. Do tej pory niewiele zajmował się teorią kwantową, ponieważ opierała się ona wciąż na bardzo grząskich podstawach, korzystając po trosze z fizyki klasycznej, a po trosze z postulatów kwantowania, wyraźnie z nią sprzecznych. Zwrócił jednak uwagę na pracę Louisa de Broglie na temat fal materii. Postulowała ona, że zarówno fotony, jak i inne cząstki mikroświata mają dualną naturę: zachowują się czasem jak cząstki, a czasem jak fale. Obowiązywał przy tym jeden uniwersalny przelicznik własności cząstkowych: energii E i pędu p na wielkości falowe: częstość (kołową) \omega i liczbę falową k\equiv\frac{2\pi}{\lambda} (\lambda jest długością fali). Współczynnikiem proporcjonalności w obu przypadakch miała być stała Plancka \hbar:

E=\hbar\omega,\,p=\hbar k.

Felix Bloch, wówczas początkujący fizyk, tak wspomina wspólne kolokwia (dziś powiedzielibyśmy raczej seminaria) fizyków z uniwersytetu w Zurychu i z ETH, gdzie najważniejszą postacią był Peter Debye.

Pewnego razu pod koniec kolokwium Debye powiedział coś w tym rodzaju: „Schrödinger nie zajmujesz się teraz żadnym ważnym tematem. Może opowiedziałbyś nam któregoś dnia o tym doktoracie de Broglie’a, który, zdaje się, przyciągnął sporo uwagi”. Więc na jednym z następnych kolokwiów Schrödinger przedstawił cudownie przejrzysty wykład o tym, jak de Broglie wiąże fale z cząstkami i w jaki sposób zdołał on uzyskać reguły kwantyzacji Bohra i Sommerfelda (…) Kiedy skończył, Debye stwierdził od niechcenia, że taki sposób ujęcia jest raczej dziecinny. Jako student Sommerfelda nauczył się, że właściwy sposób podejścia do fal wiedzie przez równanie falowe. Brzmiało to dość trywialnie i na pozór nie zrobiło głębszego wrażenia, ale Schrödinger najwyraźniej wrócił później do tego pomysłu. Zaledwie kilka tygodni później dał następne kolokwium, zaczynając od słów: „Kolega Debye zasugerował, że należy mieć równanie falowe, toteż je znalazłem”. [„Physics Today”, t. 29 (1976), nr 12, s. 23-24]

Najwyraźniej w pierwszej chwili obaj nie zdawali sobie sprawy z wagi tych badań. Erwin Schrödinger dzięki pracom z końca roku 1925 i roku 1926 stał się błyskawicznie jednym z najgłośniejszych fizyków świata. Seria jego artykułów natychmiast zyskała uznanie. Chwalili je Albert Einstein i Arnold Sommerfeld, który wraz ze swymi uczniami rozwijał od lat fizykę kwantową. Napisał do niego sędziwy Hendrik Lorentz, który uważnie śledził nowości i miał parę istotnych uwag. Surowy i poważny Max Planck, profesor najbardziej prestiżowej katedry w Niemczech (co wtedy znaczyło: najbardziej prestiżowej na świecie) – na uniwersytecie w Berlinie, pisał entuzjastycznie do Schrödingera:

Czytam pański artykuł tak, jak ciekawe dziecko, słuchające w napięciu rozwiązania zagadki, nad którą się długo głowiło, i cieszę się bardzo wszystkimi pięknościami, jakie tam dostrzegam, choć muszę go jeszcze dokładniej przestudiować, by wszystko z niego pojąć.

Kiedy w grudniu 1925 roku Schrödinger znalazł swe równanie, był to trzeci początek mechaniki kwantowej albo – jak wolał o tym mówić autor odkrycia – mechaniki falowej. Na pierwszy rzut oka nie miało to nic wspólnego z teorią Heisenberga, Borna, Jordana i Diraca. U Schrödingera nie było żadnych skoków kwantowych, żadnych wielkości macierzowych, nieprzemiennych iloczynów. Język był całkowicie klasyczny – była to matematyka drgań, dobrze już wówczas opracowana. W roku 1924 wyszła dwutomowa monografia Methoden der mathematischen Physik („Metody fizyki matematycznej”) zredagowana przez Richarda Couranta i innych matematyków z Getyngi na podstawie wykładów Davida Hilberta. Zawierała ona wiele materiału, który miał się okazać potrzebny fizykom za kilka lat. Jak na ironię metody Hilberta zastosowali pierwsi nie fizycy z grupy Maksa Borna, pracujący przecież głównie pod bokiem Hilberta w Getyndze, ale Erwin Schrödinger, outsider i naukowy samotnik. Fizycy z Getyngi zlekceważyli nawet wyraźną sugestię Hilberta w jednej z rozmów, że powinni poszukać równania różniczkowego, które opisuje skwantowane wartości energii. Nie próbowali iść tym tropem, przekonani, że ich mechanika kwantowa jest czymś całkowicie nowym i nie może się zawierać w książce sprzed paru lat. Źle przyjęli też pracę Schrödingera, która wydawała się recydywą fizyki klasycznej, odwrotem od kwantowej rewolucji spod sztandaru Heisenberga.

Fizycy klasyczni znali wiele przypadków drgań układów rozciągłych, czyli fal stojących. Są one np. podstawą wytwarzania dźwięku w instrumentach muzycznych takich, jak organy, flet, trąbka czy skrzypce. Wiadomo, że zamocowana na końcach struna drgać może tylko z określonymi ściśle częstościami: podstawową oraz jej wielokrotnościami. Rozważano różne bardziej skomplikowane możliwości, pisaliśmy tu o rówieśniku Einsteina, fizyku z Getyngi, Waltherze Ritzu. Idea Schrödingera polegała na tym, by wartości energii w atomie potraktować analogicznie do częstości dźwięku w pudle rezonansowym, stosując równanie falowe. Ma ono w przypadku trójwymiarowym postać:

\dfrac{\partial^2\psi}{\partial x^2}+\dfrac{\partial^2\psi}{\partial y^2}+\dfrac{\partial^2\psi}{\partial z^2}-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}\equiv \Delta\psi-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}=0,

gdzie v jest prędkością fal. Jeśli przyjmiemy, że nasze fale są okresowe i mają częstość \omega, możemy rozwiązania zapisać jako

\psi(x,y,z, t)=\psi(x,y,z)e^{\pm i\omega t}.

Drugą pochodna po czasie jest ta sama funkcja wykładnicza pomnożona przez stałą. Wstawiając to do równania falowego, otrzymujemy tzw. równanie Helmholtza (który pod koniec XIX wieku był profesorem w Berlinie):

\Delta \psi+k^2 \psi=0.

W równaniu tym skorzystaliśmy z tego, że \dfrac{\omega}{v}=k. Droga Schrödingera do odkrycia była dość zawikłana. Związki de Broglie’a są relatywistyczne, naturalne wydawało się więc zapisanie równania relatywistycznego. Jednak kiedy spróbujemy je rozwiązać w najprostszym przypadku atomu wodoru, okazuje się, że dopuszczalne energie nie zgadzają się z tym, co wcześniej, w starej teorii kwantów obliczył Sommerfeld i co zgadzało się z doświadczeniem (szczegóły można znaleźć u L. Schiffa, Mechanika kwantowa, s. 409 i n.). Dwa lata później sytuacja się wyjaśniła: potrzebne tu jest równanie Diraca. Dwa lata w tamtej chwili rozwoju fizyki to było więcej niż epoka, Schrödinger znajdował się dopiero u początków tej drogi i nie mógł wiedzieć, co stanie się dalej. Rozsądnie zdecydował się więc na przybliżenie nierelatywistyczne, robiąc niejako krok wstecz w porównaniu do de Broglie’a. Nie pójdziemy tu jego drogą, a właściwie kilkoma różnymi drogami, jakimi próbował uzasadnić swe równanie. Wybierzemy podejście najprostsze zaproponowane pół roku później przez Maksa Borna – musimy jednak pamiętać, że nie jest to wyprowadzenie. Nie można bowiem wyprowadzić praw mechaniki kwantowej z praw klasycznych. Dla cząstki o masie m i całkowitej energii E możemy napisać równanie zachowania energii:

E=\dfrac{\hbar^2 k^2}{2m}+V(x,y,z),

gdzie V jest energią potencjalną (pierwszy składnik to zwykła energia kinetyczna). Jeśli wyznaczymy k^2 z ostatniego równania i wstawimy do równania Helmholtza, otrzymamy tzw. równanie Schrödingera bez czasu:

-\dfrac{\hbar^2}{2m}\Delta\psi+V\psi=E\psi.

Chcąc np. opisać ruch elektronu wokół nieruchomego jądra atomowego o ładunku Ze, należy wstawić do równania Schrödingera energię potencjalną postaci

V(r)=-\dfrac{Ze^2}{4\pi \epsilon_0 r},

czyli zwykłą energię potencjalną przyciągania elektrostatycznego dwóch ładunków Ze oraz -e w odległości r. Szukamy takich funkcji \psi(x,y,z), które daleko od jądra zanikają. Okazuje się, że rozwiązania takie są możliwe tylko dla dyskretnych wartości energii równych

E_n=-\dfrac{me^4}{2(4\pi\epsilon_0)^2 \hbar^2}\dfrac{1}{n^2}, \mbox{ gdzie } n=1,2, 3, \ldots.

 Jest to wynik uzyskany w roku 1913 przez Bohra z założeń, które od początku wydawały się aktem rozpaczy, a nie solidną nauką. Równanie Schrödingera miało więc sens, choć nadal brakowało pewnych elementów do kompletnej teorii. Jednym z najważniejszych było znaczenie samej funkcji \psi. Kiedy w piszczałce organowej czy w rurce fletu wytwarzany jest dźwięk, wiemy, co drga – jest to powietrze, które ściśnięte się rozpręża, a rozprężone wraca do początkowej gęstości. Co drga w atomie wodoru? Jakie jest znaczenie funkcji \psi? Co gorsza, okazało się, że powinna ona mieć wartości zespolone, z pewnością nie było to żadne proste drganie klasyczne. Geniusz Schrödingera ujawnił się i w tym, że nie próbował odpowiedzieć na wszystkie pytania naraz i pozwolił swoim ideom rozwijać się w czasie. Publikacje uczonego z pierwszego półrocza 1926 roku wystarczyły na Nagrodę Nobla i objęcie w roku 1927 katedry w Berlinie po odchodzącym na emeryturę Maksie Plancku.

Erwin Schrödinger, człowiek wszechstronnie wykształcony, o szerokich zainteresowaniach, całkowicie zaprzecza ascetycznej wizji uczonego, który nie ma czasu na nic oprócz nauki. Wydaje się wręcz, że jego pomysłowość przy stworzeniu słynnego równania szła w parze z gorączką miłosną. Praca ta powstała w uzdrowisku Arosa, gdzie wybrał się w towarzystwie do dziś nie znanej flamy. Jego małżeństwo należało do nowoczesnych i partnerzy pozostawiali sobie bardzo wielką swobodę. Były przecież lata dwudzieste: kobiety odsłoniły nogi, tańczono charlestona, wszyscy chcieli zapomnieć o koszmarze niedawnej wielkiej wojny.

 

 

 

 

 

Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Paul Dirac – drugi początek mechaniki kwantowej (1925)

Latem 1925 roku Werner Heisenberg wystąpił w Cambridge z odczytem w Klubie Kapicy. Było to nieformalne stowarzyszenie powołane do życia przez pełnego temperamentu rosyjskiego fizyka Piotra Kapicę, coś w rodzaju klubu naukowego doktorantów i studentów. Chwila była ważna: Heisenberg zaczął właśnie budować pierwsze zręby nowej mechaniki kwantowej. Sam jeszcze nie był pewny, co z tego wyjdzie, nikt pewnie nie przypuszczał, że chodzi o największe odkrycie XX wieku (obok teorii względności). W swoim wystąpieniu Heisenberg omówił swoją pracę na temat efektu Zeemana, a pod koniec wspomniał o nowych rewolucyjnych pomysłach.

Jednym ze słuchaczy był Paul Dirac. Wydawałoby się zatem, że wtedy właśnie dowiedział się, i to wprost od samego autora o koncepcji mechaniki kwantowej. Jeśli A mówił na temat X, a B tego słuchał, to zapewne B zapoznał się w ten sposób z X. Nie zawsze to prawda, podobnie jak z obecności na wykładzie niekoniecznie wynika, że student się czegoś dowiedział. W tym przypadku mamy świadectwo samego Diraca. Twierdził on, że zupełnie zapomniał o tej części wystąpienia Heisenberga i nawet był przekonany, że niemiecki uczony nic nie wpomniał o swej ostatniej pracy. Nie ma powodu nie wierzyć Diracowi, który był prawdomówny do bólu. Pracę Heisenberga otrzymał we wrześniu 1925 roku w postaci korekty drukarskiej. Heisenberg wysłał ją do Ralpha Fowlera, ten zaś napisał na odbitce: „Co o tym myślisz?” i przesłał ją swemu doktorantowi Diracowi do Bristolu. Nie był to przypadek, Fowler poznał się na zdolnościach swego milczącego i niezbyt towarzyskiego studenta. Jednak i we wrześniu Dirac nie zrozumiał od razu znaczenia pracy Heisenberga. Stało się tak dopiero po kilku tygodniach. Zaczął wówczas rozmyślać nad tym zagadnieniem i zaproponował własną wersję podejścia do problemu. Werner Heisenberg należał do wąskiej grupy uczonych zajmujących się zagadnieniem budowy atomu, orientował się nie tylko w opublikowanych osiągnięciach, ale brał udział w dyskusjach, wiedział, kto nad czym pracuje – słowem, korzystał w pełni z przynależności do czołówki ówczesnych fizyków. Dirac pracował sam, korzystając jedynie z tego, że Ralph Fowler był dobrze poinformowany w aktualnej sytuacji fizyki kwantowej na kontynencie. Zadziwiające, że potrafił w takich warunkach bardzo wiele osiągnąć w tej i w następnych pracach. Zresztą i później pracował sam, prawdopodobnie inaczej nie potrafił. Niektórzy twierdzą, że Paul Dirac był największym fizykiem XX wieku. Jego prace nigdy wszakże nie były popularne, nie mogły stać się nagłówkami w gazetach, był uczonym budzącym respekt wśród znających się na rzeczy, nie mógł też podobać się dziennikarzom – potrzebującym paru chwytliwych słów i nie mającym czasu, by zgłębić jakąkolwiek sprawę (*).

W pracy Heisenberga Dirac zwrócił przede wszystkim na fakt, że wielkości fizyczne, takie jak pęd czy współrzędna mogą nie być zwykłymi funkcjami czasu, lecz wielkościami, których mnożenie jest nieprzemienne: xy\neq yx. Fizycy wcześniej nie posługiwali się podobnymi pojęciami. Dirac miał naturalną łatwość operowania abstrakcyjnymi pojęciami, nie zaprzątał też sobie zbytnio głowy kwestią interpretacji formalizmu. Zaczął się zastanawiać nad sensem nieprzemienności, czym jest wyrażenie xy-yx? (Obecnie nazywa się ono komutatorem i oznaczane jest [x,y].)
Pewnej październikowej niedzieli, podczas cotygodniowej pieszej wycieczki, Dirac przypomniał sobie, że widział już wyrażenie podobne do komutatora w podręcznikach mechaniki klasycznej. Komutatory przypominały tzw. nawiasy Poissona. Nie był jednak pewien, czy dobrze pamięta. W żadnej z książek, które miał u siebie w pokoju, nie było definicji nawiasów Poissona. Ponieważ w niedzielę biblioteka była zamknięta, nie mógł od razu sprawdzić, czy skojarzenie jest prawidłowe. Wspominał później:

„Noc przeszła mi w męczącym oczekiwaniu, wciąż nie wiedziałem, czy mój pomysł ma jakąkolwiek wartość, ale stopniowo moje przekonanie rosło. Rankiem wybrałem się do biblioteki od razu po jej otwarciu i kiedy znalazłem w Mechanice analitycznej [E.T.] Whittakera definicję nawiasu Poissona, stwierdziłem, że jest dokładnie to, czego mi potrzeba. Był on całkowicie analogiczny do komutatora.

Nawiasy Poissona są zaawansowanym sposobem zapisu równań mechaniki w formalizmie Hamiltona. Stan układu określony jest przez podanie położenia q oraz pędu p (w razie potrzeby wprowadzamy większą liczbę współrzędnych i odpowiadających im pędów). Dynamikę układu, czyli jego ewolucję w czasie, określa funkcja zwana hamiltonianem H. W najprostszym przypadku cząstki o masie m w polu zewnętrznym V(q) hamiltonian jest po prostu sumą energii kinetycznej i potencjalnej:

H(q,p)=\dfrac{p^2}{2m}+V(q).

Znając hamiltonian, możemy napisać równania na pochodne czasowe położenia oraz pędu:

\dot{q}=-\dfrac{\partial H}{\partial q}, \: \dot{p}=\dfrac{\partial H}{\partial p}.

Łatwo zobaczyć, że w najprostszym przypadku równania te są równoważne II zasadzie dynamiki Newtona. Ich zaletą jest ogólność: możemy w rozmaity sposób definiować nowe współrzędne i pędy tak, by postać równań Hamiltona została zachowana. Hamiltonian będzie się przy tym zmieniać, w szczególnie prostych przypadkach może on się nawet redukować do jakiejś bardzo prostej funkcji, np. liniowej w pędzie i w ogóle nie zawierającej współrzędnych. Wtedy rozwiązanie układu równań jest trywialne (oczywiście, nie zawsze łatwo odgadnąć postać takich współrzędnych, które niejako wykonają pracę za nas).

Jeśli f(q,p), g(q,p) są dowolnymi funkcjami położeń i pędów, to ich nawias Poissona ma postać:

\left\{f,g\right\}=\dfrac{\partial f}{\partial q}\dfrac{\partial g}{\partial p}-\dfrac{\partial f}{\partial p}\dfrac{\partial g}{\partial q}.

Łatwo sprawdzić, że nawiasy Poissona są antysymetryczne (zmieniają znak przy przestawieniu funkcji), liniowe, spełniają dla dowolnych trzech funkcji f,g,h warunek Leibniza:

\left\{fg,h\right\}=f\left\{g,h\right\}+\left\{f,h\right\}g.

oraz tożsamość Jacobiego:

\left\{f,\left\{g,h\right\}\right\}+\left\{g,\left\{h,f\right\}\right\}+\left\{h,\left\{f,g\right\}\right\}.

Łatwo sprawdzić, że komutator dwóch wielkości będzie także spełniał powyższe warunki, jeśli tylko mnożenie jest łączne oraz rozdzielne względem dodawania. Analogię tę zauważył Dirac. A więc komutator w mechanice kwantowej odgrywałby rolę analogiczną do nawiasów Poissona.

Definicja Poissona nie była przypadkowa, pochodną każdej funkcji f położenia i pędu po czasie możemy zapisać jako

\dot{f}=\left\{f,H\right\}.

W szczególności, wstawiając f=q oraz f=p, dostaniemy równania ruchu w postaci Hamiltona. Najbardziej podstawowe nawiasy Poissona mają postać:

\left\{ q,q\right\}=\left\{ p,p\right\}=0, \; \left\{q,p\right\}=1.

Znając te podstawowe nawiasy oraz zakładając wyliczone wyżej własności ogólne nawiasów, można łatwo znaleźć nawiasy dla wielomianów zmiennych q,p, a stąd w zasadzie dla każdej rozsądnej funkcji tych zmiennych.

Praca Diraca była czymś więcej niż tylko trafnym zgadywaniem. Obliczył on, że w granicy dużych liczb kwantowych komutator powinien przechodzić w nawias Poissona pomnożony przez stałą:

[f,g] \approx i\hbar \left\{f,g\right\}.

Przyjmując więc odpowiednie wartości komutatorów, mamy pewność, że formalizm kwantowy redukuje się do klasycznej mechaniki. Dirac otrzymał w ten sposób reguły komutacyjne, które stanowią podstawę nowej teorii. W tym samym czasie w Getyndze Born i Jordan otrzymali je także, o czym jednak Dirac nie wiedział. Odpowiedniość nie jest do końca automatyczna, ponieważ gdy zmienne q,p nie komutują, ich kolejność ma znaczenie i temu samemu wyrażeniu klasycznemu odpowiadają rozmaite wyrażenia kwantowe.

Był to debiut Diraca w dziedzinie mechaniki kwantowej. To ta praca wprawiła w osłupienie Maxa Borna: nikomu nieznany student zrobił to samo, co najznakomitsi uczeni z Getyngi i wykazał przy tym samodzielność i dojrzałość. Dopiero w czerwcu następnego roku miał zrobić doktorat.

(*) Ostatnim przykładem takiej dziennikarskiej hucpy jest doniesienie o udowodnieniu hipotezy Riemanna przez sir Michaela Atiyaha. Pisałem o hipotezie Riemanna, jest to największy otwarty problem matematyki. Atiyah był genialnym matematykiem, który zdobył w swoim czasie wszelkie możliwe nagrody, ale obecnie ma 90 lat i od paru lat zasypuje świat niepotwierdzonymi rewelacjami. W dodatku hipoteza Riemanna miałaby być udowodniona wraz z rozważaniami na temat stałej struktury subtelnej – problem w tym, że stała ta bynajmniej nie jest stałą i nic sensownego na jej temat chyba się nie da powiedzieć. Niegdyś Arthur Eddington twierdził, że zna fundamentalne powody, dla których stała ta równa jest dokładnie 1/137. Jednak w rzeczywistości nie jest ona dokładnie równa tej wartości, więc całe to wyjaśnienie nie ma sensu. Obawiam się, że podobnie jest z dowodem Atiyah. Dziennikarze obwieszczają teraz wiadomość o dowodzie, potem będą mieli drugą okazję, aby to sprostować. Jest skrajnie nieprawdopodobne, aby hipotezę Riemanna udowodnić w paru linijkach – jak twierdzi Atiyah. To tak nie działa.

 

 

Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.

 

 

P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Elementy – Euklides (ok. 300 p.npe.)

Myślimy często o starożytnej Grecji jako o cywilizacji, która dała nam filozofię, teatr, poezję, historię, sztukę, logikę, demokrację. Mniej dostrzegane są początki nauk ścisłych, które, wbrew wszelkiemu prawdopodobieństwu, osiągnęły u Greków niezwykle wysoki poziom. Dwa najważniejsze dzieła, Elementy i Almagestpowstały w Aleksandrii, pierwsze na początku świetności miasta, drugie już pod jej koniec. Oddzielone od siebie ponad czterema wiekami, skondensowały w sobie to, co najlepsze w starożytnym dorobku. A bez greckiej geometrii i astronomii nie do pomyślenia byłaby późniejsza nauka islamska, a także praca Mikołaja Kopernika i jego następców prowadząca do rewolucji naukowej XVII wieku.

Tekst Elementów, podzielony na trzynaście ksiąg, obejmuje w sposób systematyczny najważniejsze osiągnięcia matematyki greckiej przed Archimedesem. Napisane około roku 300 p.n.e. dzieło było przez wieki kopiowane zarówno w greckim oryginale, jak i w przekładach na hebrajski, arabski i łacinę, a od 1482 roku zaczęło ukazywać się drukiem w niezliczonych wydaniach książkowych, które liczbą ustępują tylko wydaniom Biblii. Aż do początku XIX wieku znano tekst Euklidesa jedynie w redakcji Teona z Aleksandrii, uczonego z IV w.n.e., ojca Hypatii. W 1808 r. François Peyrard, pierwszy bibliotekarz École Polytechnique w Paryżu, odkrył, iż rękopis Elementów zrabowany z Watykanu przez Napoleona (Vaticanus graecus 190, zwany też P) jest wcześniejszą wersją dzieła. Stała się ona później podstawą definitywnego wydania opracowanego przez duńskiego filologa Johana Ludviga Heiberga.

[Vaticanus graecus 190]

Dzieło Euklidesa nie było pierwszym noszącym ten tytuł, szybko stało się jednak klasyczne, czego pośrednim dowodem jest fakt, że nie zachowały się niemal żadne wcześniejsze teksty matematyczne – w czasach gdy kopiowanie książek było kosztowne i pracochłonne, następowała swoista selekcja naturalna rękopisów, w której te bardziej przydatne wypierały mniej użyteczne. Elementy są najwcześniejszym zachowanym greckim traktatem poświęconym matematyce, ponieważ stanowią one podręcznik, z którego można nauczyć się podstaw matematyki. Stosowane były w tej funkcji nie tylko w starożytności, ale i w czasach późniejszych aż po dziewiętnasty wiek.

Zadziwiająco mało wiemy o autorze tekstu, nawet jego istnienie podawano w wątpliwość, argumentując, że dzieło jest niejednorodne i różne jego księgi wykazują rozmaity stopień dojrzałości. Na ogół sądzi się jednak, że Euklides działał i prawdopodobnie także urodził się w Aleksandrii, mieście niedługo wcześniej założonym przez Aleksandra Wielkiego i przez długie wieki stanowiącym ośrodek nauki i kultury greckiej. Według Proklosa, neoplatończyka z V w.n.e., Euklides żył za panowania Ptolemeusza I i był młodszy niż krąg uczniów Platona, a starszy od Archimedesa i Eratostenesa. Miał być platonikiem i z tego powodu dzieło jego kulminowało konstrukcją i omówieniem pięciu brył platońskich, znanych z Timajosa. Euklidesa nie uważano nigdy za oryginalnego twórcę, sądzono, że zebrał on i usystematyzował osiągniecia poprzedników, w szczególności Eudoksosa i Teajteta. Elementy nie są jednak prostą kompilacją znanego już materiału, lecz próbą zbudowania dedukcyjnego systemu wiedzy matematycznej. Możliwe, że tak jak i w późniejszej historii matematyki, po okresach szybkich postępów następowały okresy systematyzacji i porządkowania wiedzy i Elementy są świadectwem takiego dążenia. Choć odkrycia późniejszych matematyków, takich jak Archimedes, Apoloniusz i Pappus, znacznie wykroczyły poza problematykę Elementów, dzieło to pozostało najszerzej używanym podręcznikiem w historii. Jego znaczenie nie ogranicza się do matematyki: dedukcyjny system wiedzy stał się ideałem wielu późniejszych filozofów i uczonych. W naukach ścisłych aż do dziś uważa się możliwość ustrukturyzowania wykładu na wzór greckiej geometrii za ważny sprawdzian dojrzałości danej dyscypliny. Wprowadzając postulaty, z których następnie wyprowadzamy twierdzenia, osiągamy pojęciową jasność i większą przejrzystość konstrukcji myślowych, musimy bowiem uświadomić sobie jasno przyjęte założenia.

Pamiętać też należy, iż grecka geometria nie była traktowana jako abstrakcyjna gra logiczna, lecz jako teoria wywodząca się z obserwacji dotyczących ciał w przestrzeni, stanowiła więc i nadal stanowi (wraz z nieeklidesowymi rozszerzeniami) podstawę fizyki. Można więc traktować ją jako pierwszą matematyczną teorię fizyczną. Kiedy niedługo później Archimedes w podobny sposób ujmował zasady równowagi ciał, rozszerzał niejako geometrię, tworząc zarazem pierwszą fizykę matematyczną.

Poniżej skoncentrujemy się na przedstawieniu metody postępowania Euklidesa, ograniczając się do tego, co było znane i czytane najszerzej i nie ograniczało się tylko do samej matematyki. Aksjomatyczna konstrukcja wiedzy jest osiągnięciem greckim nie mniejszym niż demokratyczne rządy albo rzeźba. Dzięki Euklidesowi nigdy już nie stracono z oczu, przynajmniej w kręgu śródziemnomorskim, owej metody uzyskiwania zdań niezbitych i pewnych. Jeśli prawdą jest, że (jak ujął to Alfred North Whitehead) filozofia europejska stanowi ciąg przypisów do Platona, to z niemniejszą dozą słuszności powiedzieć można, że nauki ścisłe – fizyka w nie mniejszym stopniu niż matematyka – stanowią rozbudowany komentarz do Elementów Euklidesa.

Każda z ksiąg (albo grup ksiąg) poprzedzona jest definicjami. Księga pierwsza zaczyna się od wymienienia pięciu postulatów geometrii oraz pięciu ogólniejszych prawidłowości odnoszących się do tego, co Euklides nazywa wielkościami – może tu chodzić (jak czytelnik dowiaduje się przy okazji kolejnych twierdzeń) o długość odcinka, wielkość kąta, pole powierzchni czy objętość pewnych brył. Następnie z owych dziesięciu założeń wyprowadzane są kolejne twierdzenia oraz konstrukcje. Księgi I-IV oraz VI, XI-XIII poświęcone są geometrii, sięga V zawiera wykład teorii proporcji Eudoksosa (odgrywały one w matematyce greckiej rolę dzisiejszych liczb rzeczywistych), księgi VII-IX dotyczą arytmetyki, w księdze X dyskutowane są rozmaite rodzaje liczb niewymiernych, zawsze jednak traktowanych jako proporcje długości pewnych odcinków. Ostatnia księga XIII kończy się twierdzeniem, że istnieje dokładnie pięć brył platońskich (sześcian oraz foremne: czworościan, ośmiościan, dwunastościan i dwudziestościan).

Podejście Euklidesa niewątpliwie wiele zawdzięcza istniejącej już tradycji matematycznej, a także platońskiemu rozróżnieniu między przedmiotami postrzeganymi przez zmysły a bytami idealnymi: korzystając z rysunków, traktuje je tylko jako pomoc w wyobrażeniu sobie, jak mają się do siebie idealne figury geometryczne. Koncepcję uporządkowania wiedzy, zaczynając od założeń, których prawdziwość przyjmuje się bez dowodu, znaleźć można u Arystotelesa, nie wiadomo jednak, czy występuje tu jakaś bezpośrednia zależność, czy tylko wspólna tradycja filozoficzna. Geometria stała się pierwszą wyspecjalizowaną dziedziną wiedzy, uprawianą nie ze względów praktycznych, lecz dla niej samej. Wysokie mniemanie o pedagogicznych wartościach geometrii żywił Platon, sądząc, że kieruje ona uwagę ku temu, co wieczne i niezmienne. Stobajos przytacza następującą anegdotę:

Ktoś zaczął się uczyć u Euklidesa i kiedy poznał pierwsze twierdzenie, spytał:
– Co mi przyjdzie z tego, żem się tego nauczył?

Na to Euklides zawołał niewolnika i powiedział:

– Daj mu trzy obole, jeśli musi mieć zysk z tego, czego się uczy.

Omówimy bliżej główne linie rozumowania księgi I Elementów. Tekst poprzedzają 23 definicje, np. „Punkt jest tym, co nie ma żadnych części”, „Linia zaś jest długością bez szerokości”, „Równoległe są proste, które będąc na tej samej płaszczyźnie rozciągają się bez kresu w obie strony, ale w żadnej części się nie przetną” (przeł. M. Roszkowski). Linia prosta u Euklidesa jest zawsze skończona, tzn. jest odcinkiem wedle dzisiejszej terminologii. Dzisiejsi matematycy nie definiują wszystkich pojęć danej teorii, część z nich muszą bowiem stanowić pojęcia pierwotne, które przyjmuje się bez definicji, a ich sens ujawnia się dopiero, gdy badamy, w jaki sposób pojęcia występują one w aksjomatach i twierdzeniach.

Pięć postulatów głosi kolejno, że

1. Z każdego punktu do każdego innego można poprowadzić prostą (odcinek).
2. Odcinek można (obustronnie) przedłużać.
3. Z dowolnego środka można zakreślić okrąg przechodzący przez dany punkt.
4. Wszystkie kąty proste są wzajemnie równe.
5. Jeśli prosta przecina dwie inne proste, tworząca dwa kąty wewnętrzne mniejsze (w sumie) od dwóch kątów prostych, to można owe dwie proste przedłużyć tak, aby się przecięły.

Kąt prosty zdefiniowany jest tak, jak to widać na rysunku: gdy oba kąty utworzone przez półprostą o początku leżącym na danej prostej są równe, to kąty są kątami prostymi. Postulat 4 głosi, że dowolne kąty proste są równe, co znaczy tyle, że są przystające – mogą być na siebie nałożone tak, aby ich wierzchołki oraz ramiona się pokrywały (Euklides nie mówi tego wprost).

Pięć aksjomatów ogólnych stwierdza (w redakcji M. Kordosa):
1. Dwie wielkości równe trzeciej są równe.
2. Dodając do równych równe, dostajemy równe.
3. Odejmując od równych równe, dostajemy równe.
4. Wielkości dające się zamienić są równe.
5. Część jest mniejsza od całości.

Aksjomaty te stosowane są do porównania długości, kątów, figur, jak np. trójkąty. Mniejszy oznacza np. w przypadku odcinków, że po ich nałożeniu zostaje jeszcze jakaś niepokryta część większego (całości). Euklides nie posługuje się żadnymi miarami, porównuje tylko wielkości między sobą. Dlatego np. trójkąty są równe, gdy są przystające (można je na siebie nałożyć), ale także, gdy mają np. wspólną podstawę oraz jednakowe wysokości – dziś powiedzielibyśmy, że ich pola powierzchni są równe. Euklides nie myślał o długości jako liczbie, ani o polu prostokąta jako iloczynie długości boków, porównywał co najwyżej między sobą dwie wielkości.

Cały wykład podzielony jest na zagadnienia, które mogą być albo rozwiązaniem problemu konstrukcyjnego, albo twierdzeniem. W księdze I znajduje się 48 zagadnień, twierdzenie I,47 to twierdzenie dziś nazywane tw. Pitagorasa, I,48 to twierdzenie do niego odwrotne. Przyjrzyjmy się postępowaniu Euklidesa. Stosujemy dla przejrzystości nieco uwspółcześnioną terminologię, sformułowania nasze nie są wprawdzie dosłownym przekładem oryginału, ale też i nie odbiegają od niego zbyt daleko.

I,1 Mając dany odcinek AB, skonstruować na nim trójkąt równoboczny.

Konstrukcja sprowadza się do zakreślenia dwóch okręgów (Post. 3), które wyznaczą punkty przecięcia (co jednak nie wynika z aksjomatów Euklidesa, choć jest prawdą). Mając punkt przecięcia C, budujemy dwa odcinki AB oraz BC (Post. 1). Odcinki te są równe, ponieważ równe są odcinkowi AB (Aksj. 1). Trójkąt jest więc równoboczny. Warto zwrócić uwagę na eliminowanie kroków „oczywistych” i zastępowanie ich odwołaniami do postulatów i aksjomatów – w tym leży matematyczna siła Euklidesa, choć w oczach mniej matematycznie nastawionego czytelnika wywołuje to wrażenie (może nadmiernej) pedanterii.

I,2 Mając dany odcinek BC oraz punkt A nie leżący na nim, skonstruować odcinek AE=BC.

Łączymy w tym celu punkty AB (Post. 1) i budujemy trójkąt równoboczny za pomocą I,1. Promieniem BC zakreślamy okrąg o środku B (Post. 3). Przedłużamy następnie odcinek BD (Post. 2) do przecięcia z tym okręgiem H. Następnie promieniem HD zakreślamy okrąg o środku D. Przedłużenie AD (Post. 2) przetnie się z tym okręgiem w punkcie E. Odcinek AE (Post. 1) jest szukanym odcinkiem równym BC. Z aksjomatów ogólnych łatwo wnioskujemy, że odcinki te są równe, tzn. równe są ich długości (promień większego okręgu na rysunku to suma AB i boku trójkąta, odejmując potem bok trójkąta, otrzymujemy naszą tezę).
Warto zauważyć, że konstrukcje Euklidesa wykonywane są za pomocą linijki bez żadnej skali oraz cyrkla, który także nie pozwala przenosić odległości, lecz tylko poprwadzić okrąg z danego środka przez dany punkt (po przeniesieniu cyrkiel „nie pamięta” swego rozwarcia). Dzięki I,2 możemy uwolnić się od tego ograniczenia i odtwarzać odległość dwóch punktów w innym miejscu.

I,4 Dwa trójkąty, których dwa boki oraz zawarty między nimi kąt są równe, są przystające (równe).

Jest to cecha przystawania trójkątów bok-kąt-bok (bkb). Euklides dowodzi tego twierdzenia, nakładając na siebie oba trójkąty. Nie jest to postępowanie oczywiste, jeśli nie uważamy naszych figur za sztywne obiekty, które można przemieszczać bez zmiany kształtu i długości. David Hilbert przyjął w XIX w. to twierdzenie za jeden z aksjomatów w swoim wykładzie geometrii euklidesowej.

I,5 W trójkącie równoramiennym ABC, w którym AB=BC, kąty wewnętrzne przy podstawie są równe.

Przedłużamy ramiona trójkąta o jednakowe odcinki BF=CG. Trójkąty ABG i ACF są przystające na mocy poprzedniego twierdzenia, zatem także kąty ABG oraz ACF są równe. Trójkąty BFC i CGB są przystające na mocy tego samego twierdzenia (kąty BFC i BGC są równe, gdyż oba trójkąty pierwszej pary są przystające). Kąty ABC i BCA można przedstawić jako różnicę odpowiednio równych kątów (np. \sphericalangle ABC=\sphericalangle ABG-\sphericalangle CBG), muszą zatem być równe.
Twierdzenie to zyskało w średniowieczu nazwę Pons asinorum („ośli most”), nie wiadomo, czy z powodu kształtu towarzyszącego mu rysunku, czy też dlatego, że w tym miejscu ujawniał się już podział na tych, którzy rozumieją geometrię i na tych, którzy jej nie rozumieją. Pappus przedstawił prostszy dowód, w którym I,4 stosujemy do trójkątów BAC i CAB: ich boki są parami równe, a kąt przy wierzchołku jest tym samym kątem BAC, zatem oba trójkąty są przystające i kąty przy podstawie są równe. Euklides mógł mieć opory przeciwko takiemu potraktowaniu jednego trójkąta jako dwóch.

I,6 Jeśli kąty przy podstawie trójkąta są równe, to trójkąt jest równoramienny.

Euklides dowodzi tego twierdzenia przez sprowadzenie do niedorzeczności (reductio ad absurdum). Zakładamy, że teza twierdzenia jest fałszywa, a następnie staramy się wykazać, że wynika stąd zaprzeczenie założeń twierdzenia. Jeśli AB\neq AC, to któryś z odcinków jest większy, tzn. ma większą długość. Załóżmy, że AB>AC. Możemy wówczas na odcinku AB odłożyć odcinek AD=AC. Kąt DCB jest zatem mniejszy od kąta ACB. Jednocześnie trójkąt DBC jest równoboczny, a więc kąty DCB i DBC są równe na mocy poprzedniego twierdzenia. Kąt DBC jest tym samym, co kąt ABC, ergo ABC jest mniejszy od ACB wbrew założeniu.

I,9 Skonstruować dwusieczną danego kąta.

Na ramionach kąta odkładamy równe odcinki AD i AE. Następnie na odcinku AD konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek wraz z wierzchołkiem kąta wyznaczają szukaną dwusieczną, co można łatwo udowodnić: kąty ADE i AED są równe jako kąty przy podstawie trójkąta równoramiennego. W takim razie także kąty ADF i AEF są równe i oba trójkąty ADF i AEF są przystające. Wobec tego kąty DAF i FAE są równe c.n.d.

I,11 Skonstruować prostopadłą do danej prostej w punkcie D.

Wyznaczamy na prostej dwa punkty A i B w równych odległościach od D: AD=DB. Następnie na odcinku AB konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek C wraz z punktem D wyznaczają szukaną prostopadłą. Aby to udowodnić, zauważamy, że trójkąty ADC i BDC są przystające, a zatem kąty CDA i CDB są równe – spełniona jest więc definicja kąta prostego i oba te kąt są równe kątowi prostemu. Tym samym DC jest prostopadła do prostej AB.

I,20 (Nierówność trójkąta) Dwa boki trójkąta razem są dłuższe od trzeciego boku.

Niech będzie dany trójkąt CAB, chcemy dowieść, że odcinki AC wraz z CB są większe od AB. W tym celu na przedłużeniu AC odkładamy odcinek CD=CB. Kąt ABD jest większy od kąta CBD. Ten ostatni równy jest kątowi CDB, czyli ADB. W trójkącie ABD naprzeciwko większego kąta leży większy bok (I, 19; nie przytaczamy dowodu), a zatem AD=AC+CB>AB (stosując współczesny zapis).
Z twierdzenia tego wynika, że długość łamanej łączącej dwa punkty jest zawsze większa niż długość odcinka łączącego te punkty. W konsekwencji, jeśli połączymy oba punkty jakąś krzywą gładką, ale taką że zarówno samą krzywą, jak i jej długość można dowolnie przybliżać za pomocą łamanych, to długość łuku krzywej nie może być mniejsza niż długość odcinka łączącego dane punkty. Inaczej mówiąc, odcinek jest krzywą o najmniejszej długości (przy ustalonych obu końcach). Euklides nie dowodzi takiego twierdzenia, ale było ono znane greckim geometrom.
Dopiero blisko połowy księgi I staje się potrzebny Postulat 5.

I,29 Jeśli prosta EF przecina parę prostych równoległych AB i CD, to kąty naprzemianległe wewnętrzne są równe.

Wykażemy, że kąt AGF równy jest kątowi EHD. Załóżmy, że oba te kąty nie są równe. Niech np. AGF będzie większy od EHD. Ponieważ kąty AGF i BGF dopełniają się do dwóch kątów prostych (I,14; nie przytaczamy dowodu), więc suma kątów BGF i EHD jest mniejsza od dwóch kątów prostych. Z Post. 5 wynika, że proste AB i CD (po ewentualnym przedłużeniu) przetną się, nie są zatem – wbrew założeniu – prostymi równoległymi.
Postulat 5 sformułowany został tak, aby wygodnie się nim było posługiwać do wykazania, że dwie proste nie są równoległe. Nie wydawał się on tak oczywisty jak pozostałe i wzbudzał zawsze rozmaite wątpliwości. Jest on równoważny innemu postulatowi sformułowanemu przez Playfaira: Przez punkt nie leżący na danej prostej można przeprowadzić dokładnie jedną prostą równoległą do danej. Postulat 5 jest także równoważny twierdzeniu o sumie kątów wewnętrznych trójkąta.

I,32 Suma kątów wewnętrznych trójkąta równa jest dwóm kątom prostym.

Wystarczy zauważyć równość zaznaczonych kątów na rysunku (linia przerywana jest równoległa do boku trójkąta).

I,47 (Tw. Pitagorasa) W trójkącie prostokątnym suma kwadratów zbudowanych na przyprostokątnych jest równa kwadratowi zbudowanemu na przeciwprostokątnej.

Zwróćmy uwagę na sformułowanie: należy najpierw skonstruować kwadraty, o których mowa w twierdzeniu, a następnie wykazać, że suma (pól) dwóch mniejszych kwadratów jest równa polu kwadratu największego. Wysokość trójkąta opuszczona z kąta prostego po przedłużeniu dzieli kwadrat na dwa prostokąty. Euklides wykazuje, że dla trójkąta ABΓ oba pola zaznaczone na zielono oraz oba pola zaznaczone na niebiesko są równe.

Dowód Euklidesa korzysta z konstrukcji I,46 kwadratu na danym odcinku oraz linii równoległej do BΔ i ΓE przechodzącej przez dany punkt A (I,31). Wykazuje następnie, że AH jest przedłużeniem AΓ oraz AΘ jest przedłużeniem AB (I,14). Trójkąty ABΔ oraz ZBΓ są przystające na mocy twierdzenia I,4 (bkb). Prostokąt BΛ o podstawie BΔ ma tę samą wysokość co trójkąt ABΔ o tej samej podstawie. Na mocy I,41 prostokąt jest dwa razy większy od trójkąta (to wynik równoważny wzorowi na pole trójkąta, gdy określimy pole prostokąta). Kwadrat BH jest z tego samego powodu dwa razy większy od trójkąta ZBΓ o podstawie ZB. W analogiczny sposób pokazać można, że oba pola zaznaczone na niebiesko są równe, co kończy dowód.

W księdze VI Euklides przytacza inny dowód tw. Pitagorasa, oparty na podobieństwie mniejszych trójkątów na rysunku i trójkąta wyjściowego. Ten drugi dowód znany był prawdopodobnie wcześniej, dowód I,47, pochodzący zapewne od samego Euklidesa, jest bardziej zadowalający matematycznie, gdyż używa mniejszej liczby założeń: w księdze I daleko jeszcze jesteśmy od tak subtelnych konstrukcji jak figury podobne.
Ostatnie twierdzenie tej księgi I,48 jest odwrotne do tw. Pitagorasa: Jeśli spełniony jest warunek pól dla kwadratów zbudowanych na bokach trójkąta, to trójkąt ów jest prostokątny.

Elementy są podręcznikiem i były nim już w chwili powstania. Ścisłość rozumowań Euklidesa stała się wzorem dla przyszłych matematyków. Wybitny matematyk XX wieku André Weil pisał: „ [Elementy] Euklidesa to pierwszy zachowany tekst matematyczny, w którym pojęcie dowodu utożsamione zostało z łańcuchem wnioskowań pozbawionym luk; nie bez powodu ten sposób widzenia przedmiotu zachował swą aktualność do dziś”.

Nie sposób oczywiście przedstawić nawet pobieżnie wpływu książki czytanej w ciągu dwudziestu kilku wieków przez tysiące ludzi: wybitnych matematyków, jak i myślicieli czy po prostu uważnych czytelników mniej lub bardziej oddalonych od nauk ścisłych.

Greckie manuskrypty Elementów przechowywane były w Bizancjum. Od nich pochodziły przekłady arabskie, które z kolei dały początek rozpowszechnianiu się tekstu zarówno na Wschód (języki hebrajski, syryjski, perski), jak i na Zachód (łacina). W europejskim średniowieczu przekładano Euklidesa z arabskiego na łacinę wielokrotnie w wieku dwunastym i później. Już sama międzynarodowa lista tłumaczy daje pojęcie o zainteresowaniu Elementami: Adelard z Bath, Hermann z Karyntii, Gerard z Cremony, Robert z Chester, Campanus z Novary. Przekład tego ostatniego stał się podstawą pierwszego drukowanego wydania Elementów w Wenecji w roku 1482. W XVI wieku udało się też dotrzeć do tekstu greckiego (w wersji Teona). Od tamtej pory ukazały się niezliczone wydania oraz przekłady na języki narodowe (brak nadal kompletnego przekładu polskiego, choć już w 1808 Józef Czech, dyrektor Liceum Krzemienieckiego, przełożył osiem ksiąg, opierając się na angielskiej wersji Roberta Simonsa).

Twierdzenie Pitagorasa w weneckim wydaniu z 1482 r. (numeracja twierdzenia lekko w nim szwankowała)

Geometria oraz arytmetyka miały w średniowieczu mocną pozycję jako sztuki wyzwolone wchodzące w skład quadrivium („czterodroże”) wraz z astronomią i muzyką (która obejmowała głównie teoretyczną naukę o proporcjach dźwięków w różnych skalach). Także i później podstawy geometrii stanowiły nieodzowny element wykształcenia, Elementów długo jeszcze używano jako podręcznika. Bertrand Russell, logik i filozof, wspomina: „W wieku jedenastu lat zacząłem Euklidesa z moim bratem w roli tutora. Było to w moim życiu wielkie wydarzenie, równie olśniewające co pierwsza miłość. Wcześniej nie wyobrażałem sobie nawet, że istnieje na świecie coś tak zachwycającego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie napotkałem w nim żadnych trudności. To wtedy po raz pierwszy zaświtało w mej głowie, że może obdarzony zostałem jakąś inteligencją”. Kilka lat młodszy Albert Einstein nie uczył się wprawdzie z Elementów, lecz z podręcznika będącego ich zmodernizowaną wersją; także dla niego odkrycie geometrii było wielkim przeżyciem, wspominał potem podręcznik jako „świętą książeczkę”, co w jego ustach – uduchowionego niedowiarka i spinozisty – miało swoją wymowę. Einstein sądził wręcz, że głęboki wstrząs intelektualny, jaki wówczas przeżył, stanowi niejako rodzaj probierza, czy ktoś się do nauki nadaje, czy nie. Zanim jeszcze podręcznik trafił w jego ręce, udało mu się znaleźć dowód twierdzenia Pitagorasa oparty na podobieństwie trójkątów (VI,31).

Metoda geometryczna kusiła też filozofów. Thomas Hobbes, mając już czterdzieści lat, natknął się w bibliotece znajomego gentlemana na egzemplarz Elementów, które otwarte były na stronie zawierającej twierdzenie Pitagorasa. Przeczytawszy jego treść, wykrzyknął: na Boga, to niemożliwe! Potem jednak cofając się stopniowo do twierdzeń, na których oparty był dowód, zrozumiał, że rozumowanie Euklidesa jest bez zarzutu. René Descartes sam był wybitnym matematykiem i z geometrią zapoznał się wcześnie w jezuickim kolegium w La Flèche. Właśnie na goemetrii wzorował się w swym podejściu do filozofii, która miała być nowym początkiem ludzkiej wiedzy. „Owe długie łańcuchy uzasadnień, zupełnie proste i łatwe, którymi zazwyczaj posługują się geometrzy, by dotrzeć do swych najtrudniejszych dowodzeń, dały mi sposobność do wyobrażenia sobie, że wszystkie rzeczy dostępne poznaniu ludzkiemu wynikają w taki sam sposób wzajemnie ze siebie, a także, że nie mogą istnieć tak odległe, do których byśmy wreszcie nie dotarli, i tak ukryte, których byśmy nie wykryli, bylebyśmy tylko nie przyjmowali za prawdziwą żadnej rzeczy, która by prawdziwą nie była, i zachowywali zawsze należyty porządek w wyprowadzaniu jednych z drugich” (przeł. W. Wojciechowska, Rozprawa o metodzie, PWN 1981, s. 23). Zdaniem Immanuela Kanta przedmioty, które bada matematyka: przestrzeń i czas nie pochodzą z doświadczenia, ale mają swe źródło w poznającym przedmiocie. Geometria stała się w ten sposób nauką o jedynie możliwej przestrzeni.

Tymczasem matematycy nabierali coraz więcej wątpliwości. Karl Friedrich Gauss już w roku 1813 rozmyślał nad geometrią nieuklidesową, lecz oportunistycznie nie zdecydował się na publikację swych wyników. Także Ferdinand Karl Schweikart, profesor prawa, rozwijał podobne idee w zaciszu gabinetu. Dopiero János Bolyai i Nikołaj Iwanowicz Łobaczewski, niezależnie od siebie zaryzykowali publikację prac sprzecznych z dotychczasową tradycją, nie były one przyjęte dobrze. Obaj zajmowali się geometrią hiperboliczną, w której istnieje nieskończenie wiele prostych równoległych do danej prostej. Postulat 5 Euklidesa jest bowiem niezależny od pozostałych i równie dobrze można zbudować konsekwentną geometrię, wychodząc z jego zaprzeczenia. Pod koniec XIX wieku David Hilbert podał ścisłe sformułowanie geometrii euklidesowej. Znalazło się w nim dwadzieścia aksjomatów, trzy pojęcia pierwotne (punkt, linia prosta, płaszczyzna) oraz cztery relacje pierwotne (leżenia pomiedzy, zawierania oraz przystawania odcinków oraz kątów). Różnica w podejściu między dawną geometrią a jej nowoczesnym, abstrakcyjnym sformułowaniem podkreślona została przez Hilberta następująco: „Powinno się w każdej chwili móc wstawić w miejsce punktów, linii i płaszczyzn – stoły, krzesła i kufle do piwa” (oczywiście pod warunkiem, że obiekty te spełniają aksjomaty geometrii).