Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Connecting to %s