Satyendra Nath Bose i ostatnia wielka praca Alberta Einsteina (1925)

Einstein w latach dwudziestych zasypywany był listami. Pisali do niego tacy, którzy właśnie rozwiązali zagadkę świata, inni znaleźli błędy w teorii względności i żądali, by się do nich ustosunkował, ktoś prosił o wsparcie albo pomoc w dostaniu się na uczelnię. Pisali także oczywiście nieznani naukowcy. W czerwcu 1924 roku otrzymał list z Indii od Satyendry Bosego wraz z załączoną pracą. Autor pragnął ni mniej, ni więcej, tylko by Einstein przełożył jego pracę na niemiecki oraz posłał do druku w „Zeitschrift für Physik” (nie wspomniał przy tym, że praca została odrzucona przez „Philosophical Magazine”):

Wielce szanowny panie, ośmielam się przesłać panu załączony artykuł do przejrzenia i zaopiniowania. Chciałbym wiedzieć, co pan o nim sądzi. (…) Nie znam niemieckiego w stopniu wystarczającym, aby przetłumaczyć artykuł. Jeśli uważa pan, że artykuł wart jest publikacji, to będę wdzięczny, jeśli przekaże go pan do publikacji w «Zeitschrift für Physik». Choć zupełnie mnie pan nie zna, to bez wahania proszę pana o taką rzecz. Gdyż wszyscy jesteśmy pańskimi uczniami poprzez pańskie prace. Nie wiem, czy jeszcze pan pamięta, że ktoś z Kalkuty prosił o pozwolenie na przekład pańskich prac z teorii względności na angielski. Udzielił pan zgody. Książka została opublikowana. Ja przełożyłem pański artykuł na temat ogólnej względności.

Rzeczywiście, praca Bosego na początku lipca została posłana do druku, pod tekstem jest notka: „przełożone przez A. Einsteina” oraz uwaga tłumacza, iż praca stanowi „ważny postęp”. Warto zwrócić uwagę na pokorę Alberta Einsteina: był najsławniejszym uczonym świata, niedawno przyznano mu Nagrodę Nobla, lecz zdecydował się na przekład i zarekomendowanie pracy kogoś zupełnie nieznanego (w dodatku jego znajomość angielskiego nie była zbyt dobra, więc rzecz nastręczała kłopoty praktyczne, podejrzewam, że pomagała mu jego pasierbica Ilse albo sekretarka Betty Neumann). Niewątpliwie uczynił to w interesie nauki, ponieważ praca Bosego wydała mu się oryginalna. Trzydziestoletni Bose uczył fizyki na uniwersytecie w Dakce i przedstawił nowe wyprowadzenie wzoru Plancka dla promieniowania cieplnego. Wzór ten wyprowadzano wciąż na nowo, nie tylko dlatego, że był ważny, ale i dlatego że te wszystkie wyprowadzenia nie były do końca zadowalające. Praca Bosego zawierała istotny szczegół techniczny, który zainteresował Einsteina, a mianowicie inne liczenie stanów dla gazu fotonów. Najkrócej mówiąc, Bose obliczał liczbę stanów gazu tak, jakby fotony były nierozróżnialne. Wyobraźmy sobie rzut monetą: mamy dwa wyniki (stany monety): orzeł albo reszka. Rozważmy teraz jednoczesny rzut dwiema monetami. Jakie są możliwe stany? dwa orły; dwie reszki; orzeł i reszka. W przypadku monet zawsze możemy odróżnić od siebie dwa wyniki: reszka na pierwszej i orzeł na drugiej oraz orzeł na pierwszej i reszka na drugiej. Gdy obliczamy prawdopodobieństwa, mamy 4 stany. W przypadku fotonów należy liczyć tak, jakby był tylko jeden stan orzeł-reszka, bo nasze monety są z natury nierozróżnialne.

satyendra
Einstein przełożył na niemiecki jeszcze jedną pracę Bosego, choć się z nią nie zgadzał. Hinduski uczony na podstawie pocztówki od Einsteina uzyskał na uczelni dwuletnie stypendium do Europy oraz – na tej samej podstawie – bezpłatną wizę niemiecką. Przyjechał do Europy, ale nie zrobił już nic podobnej wagi.

Einstein natomiast zastosował podejście Bosego do gazu kwantowego, tzn. zwykłego gazu atomów, lecz potraktowanego kwantowo. Okazało się, że ma on pewną niezwykłą własność: w dostatecznie niskiej temperaturze pewien ułamek atomów zgromadzi się w stanie o najniższej energii, a reszta będzie nadal tworzyć gaz, czyli przyjmować rozmaite dostępne energie. Było to przejście fazowe, jak skraplanie pary albo pojawianie się namagnesowania w żelazie, gdy obniżamy temperaturę. Zjawisko znane jest pod nazwą kondensacji Bosego-Einsteina, choć Bose nie ma z nim zupełnie nic wspólnego(*).

Kondensacja Bosego-Einsteina zachodzi tylko z tego powodu, że atomy „chętnie” zajmują ten sam stan, nie muszą się wcale przyciągać. Praca Einsteina stanowiła pierwszy przykład teoretycznego opisu przejścia fazowego i z tego powodu była zamieszczana w podręcznikach. Wyjaśniło się później, że nie wszystkie atomy będą się tak zachowywać, bo cząstki kwantowe dzielą się na dwie grupy: bozony i fermiony. Pierwsze mogą obsadzać licznie ten sam stan, drugie – tylko pojedynczo – jak np. elektrony. Tylko bozony mogą podlegać kondensacji, chyba że fermiony połączą się np. w pary, które będą już bozonami.

W roku 1925 Einstein zajmował się głównie nie fizyką kwantową, lecz konstruowaniem jednolitej teorii grawitacji i pola elektromagnetycznego. Miał to robić bez powodzenia przez następne 30 lat. W lipcu 1925 zaczęła się kwantowa rewolucja – Werner Heisenberg wysłał pierwszą pracę nt. mechaniki kwantowej, w ciągu miesięcy rozpoczął się najważniejszy przewrót w fizyce XX wieku. Einstein obserwował go z bliska, lecz nie wziął w nim udziału. Nie podzielał entuzjazmu młodszych kolegów i Nielsa Bohra dla nowej fizyki. Dlatego ta praca o gazie kwantowym jest ostatnią, która ma znaczenie, by tak rzec, podręcznikowe.
W końcu roku 1924 Einstein zapisał równania dla takiego gazu nieoddziałujących bozonów i przewidział kondensację (praca została opublikowana w styczniu 1925 r.). W roku 1995, równo siedemdziesiąt lat później, udało się ten podręcznikowy przykład zrealizować doświadczalnie. Wygląda to tak:

640px-Bose_Einstein_condensate

Widzimy tu rozkład prędkości atomów rubidu dla kilku zmniejszających się temperatur. Temperatura kondensatu to 170 nK (nanokelwinów, czyli 10^{-9} K). Atomy kondensują w stanie podstawowym, który ma postać spłaszczonej górki: odzwierciedla to kształt pułapki, w jednym kierunku bardziej stromej niż w drugim (prędkości zachowują się odwrotnie: rozkład jest szerszy w tym kierunku, w którym pułapka jest bardziej stroma – jest to przejaw zasady nieoznaczoności).

Autorzy tych eksperymentów, Eric Cornell i Carl Wieman, kilka lat później dostali Nagrodę Nobla, jest to obecnie cała dziedzina badań eksperymentalnych i teoretycznych.

Przyjrzyjmy się bliżej efektowi odkrytemu przez Einsteina. Bose najprawdopodobniej nie zdawał sobie sprawy, że traktuje fotony jak cząstki nierozróżnialne. Einstein zastosował podejście Bosego do cząstek „zwykłego” gazu jednoatomowego (można wtedy nie zajmować się drganiami i obrotami, które ważne są w przypadku cząsteczek chemicznych). Otrzymał zmodyfikowane równanie stanu gazu doskonałego, w którym ciśnienie jest mniejsze niż wynikałoby z równania Clapeyrona (pV=nRT). Koledzy, m.in. Paul Ehrenfest i Erwin Schrödinger, zwrócili mu uwagę, że licząc stany gazu na sposób Bosego, odchodzi od przyjętych zasad mechaniki statystycznej Boltzmanna. Można to przedstawić na obrazku. Mamy tu dwa stany i dwie cząstki do rozmieszczenia.

W statystyce Bosego-Einsteina cząstki są nierozróżnialne. To nowa cecha mechaniki kwantowej (której, pamiętajmy, wciąż jeszcze nie ma). Wiadomo było, że atomy są jednakowe, ale fizyka klasyczna nie bardzo potrafiła sobie z tym faktem poradzić. James Clerk Maxwell porównywał atomy do standaryzowanych wytworów fabrycznych (fabrykantem byłby tu Bóg). W zasadzie jednak atomy klasyczne powinny być rozróżnialne, co na obrazku statystyki Boltzmanna zaznaczyłem kolorami. Klasyczna fizyka statystyczna Boltzmanna była tu nie do końca konsekwentna, ponieważ we wzorach na entropię, należało wprowadzić dodatkowy czynnik ad hoc (tzw. poprawne zliczanie boltzmannowskie). W roku 1926 pojawił się drugi rodzaj statystyki, obowiązujący dla fermionów. Paul Dirac zauważył, że chodzi o symetrię funkcji falowej, która w przypadku bozonów jest całkowicie symetryczna na przestawienia cząstek identycznych, a w przypadku fermionów – antysymetryczna. Zapełnianie powłok elektronowych i orbitali w chemii są konsekwencją faktu, że elektrony są fermionami.

W świecie kwantowym (czyli naszym) każda cząstka jest albo bozonem, albo fermionem. Jest to fakt fundamentalny. Einstein, idąc w ślady Bosego, wprowadził do fizyki cząstki identyczne. Sam Bose prawdopodobnie nie zdawał sobie sprawy z konsekwencji nowego sposobu liczenia stanów. Zdroworozsądkowe liczenie stanów jak u Boltzmanna nie odpowiada rzeczywistości i nie jest zgodne z doświadczeniem. 

Wróćmy do gazu atomowych bozonów. Różni się on od fotonów tym, że liczba cząstek powinna być zachowana: atomy w naczyniu nie znikają ani nie pojawiają się znienacka, podczas gdy fotony mogą być emitowane i pochłaniane przez ścianki naczynia. W danej temperaturze T średnie zapełnienie stanów o energii \varepsilon_i jest równe wg statystyki Boltzmanna

\overline{n}_i=\lambda g_i \exp{\left(-\dfrac{\varepsilon_i}{kT}\right)},

gdzie \lambda jest pewną stałą normalizacyjną, g_i – liczbą stanów o energii \varepsilon_i, a k – stałą Boltzmanna. Iloczyn kT jest temperaturą wyrażoną w jednostkach energii i co do rzędu wielkości jest równy średniej energii cząstek w danej temperaturze (np. w jednoatomowym gazie doskonałym średnia energia kinetyczna atomów jest równa \frac{3}{2}kT).

Wynik otrzymany przez Einsteina dla gazu bozonów miał postać następującą:

\overline{n}_i=\dfrac{g_i}{\lambda^{-1}\exp{\left(\dfrac{\varepsilon_i}{kT}\right)}-1}.

Łatwo zauważyć, że oba wyrażenia dadzą ten sam wynik, gdy wartość eksponenty jest dużo większa od 1 i można tę jedynkę w mianowniku pominąć. Na ogół średnia liczba obsadzonych stanów bozonowych jest większa, niż przewiduje to statystyka Boltzmanna. Podobne wyrażenie można też uzyskać dla fermionów, mamy wtedy do czynienia z gazem fermionów. Przykłady to gaz elektronów w metalu albo białym karle. Wyrażenie różni się znakiem jedynki w mianowniku, ale nie bedziemy tej kwestii rozwijać.

Einstein zastosował statystykę BE do gazu nieoddziałujących atomów zamkniętych w pudle. My zastosujemy ją do innej sytuacji, a mianowicie nieoddziałujących bozonów zamkniętych w parabolicznym potencjale. Jest to zwykły oscylator harmoniczny. Okazuje się, że sytuację taką można zrealizować eksperymentalnie, a w dodatku jest ona fizycznie przejrzysta i Einstein nie miałby żadnych trudności z zapisaniem wyrażeń, które rozpatrzymy niżej. Po prostu nikomu się wówczas nie śniło, że można będzie taki eksperyment zrealizować, więc nie miało sensu robić obliczenia dla tego przypadku. Choć mechaniki kwantowej ciągle jeszcze nie było, to wiadomo było, że energia oscylatora jest skwantowana i równa

E=h\nu(n_x+n_y+n_z),

gdzie h jest stałą Plancka, \nu – częstością oscylatora, a liczby kwantowe n_i są całkowite i nieujemne, przy czym . Kolejne dozwolone tworzą drabinę stanów oddalonych o h\nu. Inaczej mówiąc, dozwolone energie są równe

E=nh\nu,\,\,\, \mbox{gdzie}\,\,\, n=n_x+n_y+n_z.

Jak łatwo obliczyć, liczba stanów o takiej energii równa jest

g_n=\dfrac{(n+1)(n+2)}{2}.

Jeśli do takiego harmonicznego potencjału wprowadzimy N bozonów, to suma średnich liczb obsadzeń musi się równać N:

{\displaystyle N=\sum_{k=0}^{\infty}\overline{n}_k=\sum_{k=0}^{\infty}\dfrac{g_k}{\lambda^{-1}\exp{\left(\dfrac{k}{T}\right)}-1}.}

W ostatnim wyrażeniu wprowadziliśmy temperaturę mierzoną w jednostkach h\nu, tzn. nasze nowe T jest równe \frac{kT}{h\nu}. Jest to jedyny parametr teorii. Wartość \lambda musi być taka, żeby ostatnie równanie było spełnione. Ponadto mianownik z funkcją wykładniczą musi być dodatni, więc \lambda<1 (średnie liczby obsadzeń nie mogą być ujemne, tak samo jak np. średnia liczba brunetów w próbce ludzi).

Dalej niesie nas już formalizm, tak jak poniósł Einsteina w grudniu 1924 roku. Możemy z N wydzielić obsadzenie stanu postawowego N_0:

{\displaystyle N=N_0+ \sum_{k=1}^{\infty}\dfrac{g_k}{\lambda^{-1}\exp{\left(\dfrac{k}{T}\right)}-1}\equiv N_0+N_{exc}(T,\lambda).}

Suma N_{exc}(T,\lambda) osiąga maksymalną wartość przy \lambda=1:

{\displaystyle N_{max}(T)=\sum_{k=1}^{\infty}\dfrac{g_k}{\exp{\left(\dfrac{k}{T}\right)}-1}.}

Suma ta zależy wyłącznie od temperatury! Wykrzyknik oznacza nasze (i Einsteina) zdziwienie w tym miejscu. Zobaczmy, jak wygląda ta suma w funkcji temperatury.

Przedstawiliśmy tu obliczenia numeryczne (punkty) oraz przybliżenie analityczne:

N_{max}\approx 1.202 T^3\equiv 1.202 \left(\dfrac{kT}{h\nu}\right)^3.

Czemu ten wynik jest dziwny? Ano dlatego, że dla danej temperatury mamy pewną maksymalną liczbę cząstek, jakie można umieścić w danym potencjale. Tymczasem liczba N powinna być dowolnie duża. Ostatnie równanie oznacza, że obniżając temperaturę, osiągniemy w końcu sytuację, w której mamy mniej miejsc do obsadzenia niż cząstek. To oczywiście niemożliwe. Poniżej temperatury zadanej ostatnim równaniem, jakaś część atomów musi znajdować się w stanie podstawowym, i to część makroskopowo zauważalna. Inaczej mówiąc, atomy zaczną się kondensować w stanie o energii zerowej. W tym obszarze temperatur, parametr \lambda jest praktycznie równy 1. Mamy więc warunek

N\approx 1.202 T_{0}^3, \,\, \mbox{(**)}

określający temperaturę krytyczną T_0 przy danej liczbie atomów oraz liczbę atomów w stanach wzbudzonych poniżej temperatury krytycznej:

N_{exc}=N_{max}(T)=N \left(\dfrac{T}{T_0}\right)^3.

Atomy, które nie są wzbudzone, są w stanie podstawowym, zatem ich liczba równa się

N_0=N\left(1-\left(\dfrac{T}{T_0}\right)^3\right).

Funkcję tę przedstawiliśmy na wykresie.

Ważne jest, aby odróżniać kondensację Bosego-Einsteina od zwykłego wzrostu liczby obsadzeń stanu podstawowego wraz ze spadkiem temperatury. Tutaj mamy do czynienia z przejściem fazowym, pierwszym, jakie zostało opisane w fizyce statystycznej. Rozumowanie Einsteina było nieoczywiste dla kolegów. Nie było wcale jasne, czy formalizm fizyki statystycznej w ogóle może opisać przejścia fazowe. Tutaj w dodatku Einstein zaproponował nową statystykę, która mogła, ale wcale nie musiała okazać się prawdziwa. Ponadto model nieoddziałujących atomów jest nadmiernie uproszczony, co jest zarzutem technicznym, ale potencjalnie istotnym dla słuszności konkluzji. Sam Einstein nie był pewien i podkreślał, że tak może być, lecz nie ma co do tego pewności. Jednak jego dwudziestoletnie doświadczenie z fizyką statystyczną nie zawiodło. Statystyka okazała się prawdziwa (dla bozonów). Przejścia fazowe zaczęto na serio badać dopiero w latach trzydziestych (por. Lars Onsager i model Isinga). Jedna ze współpracowniczek Einsteina w latach czterdziestych Bruria Kaufman współpracowała z Larsem Onsagerem przy uproszczeniu jego monumentalnej pracy nt. modelu Isinga w dwóch wymiarach. Także Chen Ning Yang zajmował się modelem Isinga i nawet starał się zainteresować tym tematem Einsteina, gdy pracował w IAS w Princeton.

Ze współczesnego punktu widzenia faza skondensowana jest makroskopowo widocznym stanem kwantowym. Pewien odsetek atomów znajduje się w tym samym stanie, w przypadku pułapki harmonicznej gęstość atomów zarówno w przestrzeni położeń, jak i pędów, jest gaussowska, co odpowiada funkcji falowej stanu podstawowego oscylatora.

Wygląda to jak na obrazkach: w miarę obniżania temperatury pojawia się gaussowskie wąskie skupienie atomów, które rośnie w miarę zbliżania się do zera bezwzględnego. Czerwona linia pionowa obrazuje temperaturę. Widzimy też skok ciepła właściwego, co jest jednym ze wskaźników przejścia fazowego (Obrazki wg Bose-Einstein Condensation in a Harmonic Trap).

Atomy rubidu 87 użyte przez odkrywców kondensacji mają 37 elektronów i 87 nukleonów w jądrze, a więc parzystą liczbę fermionów, dlatego są bozonami. Pułapki stosowane w eksperymencie mają nieco odmienne częstości w różnych kierunkach, przez co rozkłady są iloczynami trzech funkcji Gaussa z róńymi szerokościami wzdłuż osi x,y,z.

(*) Obowiązują w historii nauki dwie zasady:
Zasada Arnolda: Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy.
Zasada Berry’ego: Zasada Arnolda stosuje się do samej siebie.
(Chodzi o Michaela Berry’ego i Vladimira Arnolda)

(**) W niskich temperaturach suma może być zastąpiona całką, ponieważ funkcja zmienia się bardzo wolno. Otrzymuje się wówczas

{\displaystyle N_{max}(T)\approx\dfrac{T^3}{2}\int_{0}^{\infty}\dfrac{x^2 dx}{e^{x}-1}= \dfrac{T^3}{2} \Gamma(3)\zeta(3),}

gdzie \Gamma i \zeta to funkcje Eulera i Riemanna.

1 komentarz do “Satyendra Nath Bose i ostatnia wielka praca Alberta Einsteina (1925)

  1. Świetny artykuł. W sumie zabrakło mi tylko wskazania tak wprost, że ze względu na wykrycie, że cząstki różnią się rodzajem statystyk obsadzeń, zostały podzielone na te właśnie dwie wymienione grupy – bozony, podlegające statystyce Bosego-Einsteina i fermiony podlegające statystyce Fermiego. Tym sposobem Bose został utrwalony w nazwie pojęcia dla fizyki bardzo mocno podstawowego, choć w sumie jego czynny wkład w fizykę nie był jakiś bardzo duży.

    Polubienie

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s