Grawitacja: Newton na ramionach Hooke’a? (1679-1680) (1/2)

„Jeśli dalej sięgnąłem wzrokiem, to dlatego że stałem na ramionach olbrzymów” – pisałem jakiś czas temu o debacie, w której Newton użył tego określenia. Chodziło tam o optykę i profesor z Cambridge wyraził się z pewną retoryczną przesadą. Jeśli miał naukowy dług wdzięczności wobec Roberta Hooke’a, to raczej w kwestii grawitacji. Prawo ciążenia było największym osiągnięciem Newtona i zapewne największym odkryciem w dziejach nauki, epoka nowożytna – nasza epoka – zaczęła się właśnie wtedy, na dobre i złe. Hooke głosił ideę grawitacji poruszającej planety przed Newtonem, choć nie potrafił przekuć jej w matematyczne dowody. Myśl, że może komuś coś zawdzięczać, a w dodatku tym kimś ma być kłótliwy i namolny Robert Hooke, doprowadzała Newtona do białej gorączki.

Umiejętność stawania na ramionach poprzedników stanowi główną siłę naszego gatunku. Metaforę takiej wertykalnej sztafety pokoleń napotykamy nie tylko w tekstach, ale i w sztuce, np. na witrażach katedry w Chartres.

Tutaj Ewangeliści stoją (boso, z iście ewangeliczną prostotą, nie jak dzisiejsi biskupi) na ramionach tych proroków starotestamentowych, którzy mieli ich zapowiadać zgodnie ze średniowieczną teologią (Ezechiel św. Jana, Daniel – św. Marka itd). Idea postępu, rozwijania się w czasie wywodzi się zresztą z chrześcijaństwa, choć jej głównym przykładem stały się od XVII wieku nauka i technologia. O postępie społecznym, moralnym, politycznym – we wszystkich obszarach, gdzie ujawnia się tzw. natura ludzka – lepiej zamilczeć. Mamy, niestety, więcej z szympansów zwyczajnych niż z bonobo. Czy samcza agresja jest jakoś sprzężona z twórczością intelektualną? Widzimy, że małpy potrafiące posługiwać się iphonem i twitterem mogą stać się tym bardziej niebezpieczne dla przyszłości naszego gatunku.

Jednym z przejawów walki o status osobnika alfa są w nauce spory o priorytet odkrycia. Zdaniem Roberta K. Mertona, klasyka socjologii, chodzi też o coś więcej. Naukowe uznanie, ranga uczonego, jest nagrodą za oryginalność badań, a ta nie może być podrabiana. Wszyscy stoją więc na ramionach kolegów, ale kłócąc się zawzięcie o rozmiary własnej postaci na witrażu.

Gresham College i narożnik, w którym mieszkał Robert Hooke (9), na dachu widać daszek jego obserwatorium (8), w którym zamontował nieruchomy zenitalny teleskop do obserwacji paralaksy rocznej. Twierdził, że ją wykrył, wiemy, że to nieprawda. Efekt był mniejszy, niż wtedy sądzono, wcześniej wykryto aberrację światła.

Profesor geometrii w Gresham College w Londynie, Robert Hooke był uczonym wybitnym, niezwykle wszechstronnym, zorientowanym zarówno w literaturze naukowej, jak i w praktycznych osiągnięciach rzemieślników budujących zegary, teleskopy, przyrządy miernicze czy nawigacyjne. Zajmował się budową pomp próżniowych, doświadczeniami z gazem, obserwacjami mikroskopowymi, astronomią (odkrył czerwoną plamę na Jowiszu i usiłował zmierzyć paralaksę gwiazdy γ Draconis), urządzeniami mechanicznymi, dokonał ważnych obserwacji biologicznych i paleontologicznych, zbudował wychwyt kotwicowy – ważny element zegara sprężynowego, miał oryginalną teorię umysłu, a także, co ważne dla nas w tej chwili, głosił pomysł siły przyciągającej między Słońcem i planetami. Wychwyt kotwicowy zbudował też Christiaan Huygens, prawo ciążenia powszechnego sformułował Newton, który potrafił też przedstawić jego liczne zastosowania. W obu przypadkach Hooke usiłował bronić swojego priorytetu, jednak na próżno. Dziś tylko prawo sprężystości upamiętnia tego uczonego, tak ważnego dla Towarzystwa Królewskiego i dla Londynu, to on bowiem obok sir Christophera Wrena był jednym z głównych budowniczych stolicy po wielkim pożarze z 1666 roku. Obserwatorium w Greenwich, sławny Bedlam – szpital dla obłąkanych i wiele innych budowli to jego dzieło. Pomagał też przy niełatwej konstrukcji wielkiej kopuły katedry św. Pawła. Nie zachował się żaden jego portret (niektórzy widzą w tym fakcie przejaw mściwości Newtona, który po śmierci Hooke’a przewodniczył Towarzystwu Królewskiemu), poniżej zamieszczamy coś w rodzaju portretu pamięciowego, sporządzonego zgodnie z opisami powierzchowności uczonego.

`Oba portrety autorstwa Rity Greer, 2006

Próba nawiązania korespondencji z Newtonem w roku 1675 okazała się nieudana i zakończyła się na jednym liście profesora z Cambridge, tym zawierającym metaforę następców stojących na ramionach wielkich poprzedników. Pod koniec 1679 roku Hooke napisał znowu, miał pretekst formalny: został sekretarzem Towarzystwa Królewskiego i do jego obowiązków należała korespondencja w imieniu Towarzystwa. Zapewniał, iż osobiście nie czuje żadnej wrogości i chciał  się dowiedzieć, co Newton sądzi m.in. na temat jego hipotezy, że ruchy planet można uważać za wypadkową ruchu prostoliniowego i ruchu pod wpływem przyciągania w kierunku ciała centralnego. List nie zawiera rysunku, ale hipoteza wyglądałaby mniej więcej tak.

Wiadomo było od czasów Galileusza i Torricellego, że idealną (bez oporu ośrodka) krzywą balistyczną można było uzyskać w podobny sposób.

Mogłoby się wydawać, że jesteśmy już bardzo blisko prawa ciążenia: należy „tylko” ustalić, jak siła ciężkości zależy od odległości od ciała centralnego, a potem skonstruować krzywą według narysowanego przepisu. Ściśle biorąc, należało uważać wektory za nieskończenie małe: planeta nieco się przesuwa wzdłuż stycznej i jednocześnie spada. Matematyka niezbędna do znalezienia krzywej to rachunek różniczkowy i całkowy, odkryty i rozwinięty przez Newtona jeszcze w latach sześćdziesiątych i na początku siedemdziesiątych. Prace te nie były publikowane, mało kto o nich wiedział, a z pewnością nikt nie rozumiał ich głębi i znaczenia. Hooke mógł coś słyszeć o matematycznym geniuszu Newtona, ale z pewnością nie znał szczegółów. Sam był wprawdzie profesorem geometrii, lecz oznaczało to matematykę elementarną potrzebną mierniczym i nawigatorom, którzy uczyli się w Gresham College. Hooke swoje pomysły przedstawił w druku kilka lat wcześniej w postaci trzech założeń.

Pierwsze, że wszystkie ciała niebieskie obdarzone są mocą przyciągającą albo grawitacyjną w kierunku swego centrum, za pomocą której przyciągają nie tylko swoje własne części, nie pozwalając im odlecieć, jak
to obserwujemy na Ziemi, ale że przyciągają także wszystkie inne ciała niebieskie, które znajdują się w obrębie ich sfery aktywności, tak że nie tylko Słońce i Księżyc mają wpływ na ciało i ruchy Ziemi, a Ziemia na nie,
ale także Merkury, Wenus, Mars, Jowisz, Saturn mają dzięki swym mocom przyciągającym istotny wpływ na jej ruch, podobnie jak odpowiednia moc przyciągająca Ziemi ma duży wpływ na każdy z ich ruchów.

Drugie założenie mówi, że wszystkie ciała wprawione w prosty i prostoliniowy ruch będą kontynuować taki ruch po linii prostej, dopóki nie zostaną przez jakieś działające moce odchylone i zmuszone do ruchu po okręgu, elipsie albo jakiejś innej złożonej linii krzywej.

Założenie trzecie mówi, że te moce przyciągające są tym potężniejsze w działaniu, im bliżej ich środka znajdzie się ciało, na które działają. [An Attempt to prove the Motion of the Earth from Observations, London 1674, s. 27-28.]

Zanim przedstawimy reakcję Newtona, zróbmy rzut oka wstecz. W roku 1619 Johannes Kepler podsumował swoje rozumienie ruchów planetarnych, ilustruje je rysunek z Epitome astronomiae Copernicane („Skrót astronomii kopernikańskiej” – w istocie była to astronomia Keplerowska, tylko nieruchomość Słońca wiązała ją z Kopernikiem). Kepler był jednak uczonym wyjątkowo skromnym i tak oryginalnym, że nie potrzebował walczyć o swój priorytet, bowiem współcześni niezbyt rozumiejąc, czego dokonał, niezbyt mu też zazdrościli.

Mamy tu ruch planety po elipsie wokół Słońca w jednym z jej ognisk. Mechanika nieba, która za tym stała, była następująca. Po pierwsze, każde ciało obdarzone było siłą inercji i pozostawione samo sobie zatrzymywało się po chwili. To dynamika przesuwania ciężkiej szafy: pchamy – szafa się przesuwa, przestajemy pchać – szafa staje w miejscu. Dzięki tej zasadzie bezwładności można się było nie obawiać, że planety pospadają na Słońce. Do wytworzenia ich ruchu obiegowego służyła Keplerowi specjalna moc obracająca, rodzaj pola siłowego, którego źródłem było obracające się wokół osi Słońce (Kepler pierwszy upatrywał w Słońcu źródło siły poruszającej planety, dla Kopernika Słońce było po prostu rodzajem lampy centralnie umieszczonej w machinie świata). Im dalej od Słońca znajduje się planeta, tym mniejszą ma prędkość. Drugie prawo Keplera można zapisać jako v_{\perp}\sim 1/r, gdzie v_{\perp} to składowa prędkości prostopadła do promienia wodzącego r. Dziś fakt ten nazywamy zasadą zachowania momentu pędu. U Keplera odpowiadała za to siła. Ponieważ jednak planety poruszają się po ekscentrycznych elipsach, na przemian zbliżając się i oddalając od Słońca, więc potrzebna była druga jeszcze siła: magnetyczna. Magnetyzm znany był z dzieła Williama Gilberta (De magnete, 1600), lekarza królowej Elżbiety I, a więc dynastycznie jakby wczoraj. Wyjaśnił on działanie kompasu, o którym przedtem wypisywano różne magiczne głupstwa. W tym celu zbadał zachowanie igły magnetycznej w pobliżu magnesu o kształcie kulistym, będącego niczym mała Ziemia, terrella.

Magnetyzm ograniczony był jego zdaniem do pewnej sfery działania: orbis virtutis na rysunku. U Keplera mamy osobliwy mechanizm magnetyczny: planeta jest rodzajem igły zachowującej stale tę samą orientację przestrzenną, Słońce natomiast jest magnesem, którego jeden biegun jest na powierzchni, drugi zaś ukryty w centrum. Oczywiście nie ma w przyrodzie takich magnesów, podobnie zachowywałby się monopol magnetyczny. Całość tej konstrukcji Keplera sprawia trochę wrażenie barokowego gabinetu osobliwości, gdzie nazbierało się wiele różnych dziwnych urządzeń czy eksponatów. Musimy jednak pamiętać, że nie było jeszcze żadnej matematycznej dynamiki, a Kepler starał się powiązać ten mechanizm z bardzo precyzyjnym matematycznym opisem ruchu planet (trzy prawa Keplera). Jego matematyka była znakomita, mechanika natomiast musiała zostać stworzona na nowo.

W XVII wieku mechanika ziemska i niebieska szybko stawała się nauką. A jak to określił antropolog Max Gluckman, „nauką jest każda dyscyplina, w której głupiec obecnego pokolenia może sięgnąć dalej niż geniusz pokolenia minionego” (Politics, Law, and Ritual in Tribal Society, s. 32; chodziło tam zresztą o kurtuazyjną, lecz zdecydowaną krytykę naszego rodaka Bronisława Malinowskiego). Hooke nie był bynajmniej głupcem, ale stał już na ramionach wielu uczonych: Kartezjusza, Huygensa i całej plejady pomniejszych twórców Rewolucji naukowej. Czym górowała hipoteza Hooke’a? Jej założenie drugie było doskonalszą formą zasady bezwładności: nie tylko spoczynek, ale i ruch jednostajny prostoliniowy nie wymagał podtrzymywania. Aby była to prawda, trzeba było przyjąć, że opór ośrodka wypełniającego kosmos jest zaniedbywalny. Zasada ta pochodziła zresztą od Kartezjusza, choć u niego opór eteru niweczył stale tendencję do prostoliniowego, bezwładnego ruchu. Potrzebna była też tylko jedna siła, skierowana ku Słońcu. Wzajemne przyciąganie komplikowało zarazem problem: gdybyśmy musieli, jak w założeniu pierwszym Hooke’a, uwzględniać przyciąganie wszystkich pozostałych planet, wyjaśnienie ruchów w Układzie Słonecznym musiałoby poczekać aż do drugiej połowy wieku dwudziestego i wynalezienia komputerów. Na szczęście można ruch ten przedstawić jako przyciąganie przez jedno ciało centralne plus niewielkie poprawki wynikające z przyciągania innych obiektów.

Hooke zaproponował więc radykalne uproszczenie pojęciowe problemu ruchu planet – najważniejszego zagadnienia nauk ścisłych od starożytności. Nie wszystko pochodziło tu od niego, raczej przekształcił on idee krążące w londyńskim powietrzu, w dyskusjach uczonych takich, jak Christopher Wren czy Edmond Halley. Ów świeży powiew z Londynu ożywił zastałe powietrze Cambridge i stał się ważnym impulsem dla Newtona, o czym opowiemy w następnej części.

Isaac Newton: dwa twierdzenia o ruchu planet (1684)

Znane są przypadki wybitnych uczonych, którzy niezbyt chętnie publikują nawet istotne wyniki. Doktoranci Caltechu obawiali się przedstawiać swoje prace Richardowi Feynmanowi, bo mógł on wyjąć z biurka jakieś swoje stare obliczenia, zawierające to samo. Podobne historie opowiadano o Larsie Onsagerze, który latami nie publikował wielu swoich wyników (jak np. ścisłe rozwiązanie dwuwymiarowego modelu Isinga), przedstawiając je tylko na jakimś wykładzie albo w formie uwag po czyimś seminarium.

W roku 1684 w środowisku londyńskich członków Towarzystwa Królewskiego dyskutowano na temat ruchu planet. Wysuwano przypuszczenie, że na planety działa ze strony Słońca siła odwrotnie proporcjonalna do kwadratu odległości planety od naszej gwiazdy. Sir Christopher Wren, wybitny architekt, twórca katedry św. Pawła i wielu ważnych budowli w Londynie, wyznaczył nawet nagrodę: książkę o wartości 40 szylingów dla tego, kto rozwiąże zagadnienie ruchu planet. Próbował tego dokonać astronom Edmond Halley, jednak bez skutku. Robert Hooke chwalił się, że zna rozwiązanie, ale go nie pokazał. W sierpniu tego roku Halley był w Cambridge i spotkał się tam z Isaakiem Newtonem. Zapytał go, po jakim torze poruszać się powinna planeta poddana przyciąganiu odwrotnie proporcjonalnemu do kwadratu odległości od Słońca. Po elipsie – odrzekł bez wahania Newton. Okazało się, że kiedyś już to wykazał, nie mógł jednak znaleźć dowodu wśród papierów, obiecał więc go wysłać pocztą. Za jakiś czas Halley otrzymał krótką pracę De motu corporum in gyrum„O ruchu ciał po orbitach”. Ważniejsze było, że pod wpływem tej rozmowy Newton na nowo zajął się zagadnieniem ruchu planet. Wciągnęło go ono na tyle, że w ciągu osiemnastu miesięcy napisał najważniejszą książkę w historii nauk ścisłych: Matematyczne zasady filozofii przyrody (1687). Odkrył po drodze prawo powszechnego ciążenia i niejako przy okazji sformułował trzy zasady dynamiki, których uczy się w szkołach.

Dwa główne wyniki De motu corporum in gyrum dotyczą siły działającej na planetę ze strony Słońca. Znane było od dawna, choć niezbyt dobrze rozumiane II prawo Keplera: promień wodzący planety zakreśla w jednakowych czasach jednakowe pola. Newton zdał sobie sprawę, że prawo to oznacza, iż na planetę działa siła skierowana ku Słońcu.

propositio1

(Rysunek z Matematycznych zasad, 1687)

Łamana ABCDEF jest drogą planety. Wyobrażamy sobie, że w jednakowych odstępach czasu planeta popychana jest impulsami skierowanymi do Słońca S, wskutek tego zamiast poruszać się ruchem prostoliniowym po odcinku Bc, porusza się po odcinku BC. Trójkąty SBc i SBC mają jednak tę samą wysokość, a więc ich pola powierzchni są równe.

Wiemy zatem, że siła poruszająca planetę skierowana jest ku Słońcu. Jeśli przyjmiemy za Keplerem, że orbita planety jest elipsą, to można wykazać dodatkowo, iż siła ta jest odwrotnie proporcjonalna do kwadratu odległości planety od Słońca r=SP. (Słońce jest w ognisku elipsy, nazywanym tu przez Newtona: umbilicus – dosł. pępek).

lohne

 

Na drodze od P do Q planeta „spada” w kierunku linii SP o odcinek RQ. Droga PQ przebywana jest w krótki czasie \Delta t . Jeśli czas ten jest bardzo krótki, planeta porusza się ruchem jednostajnie przyspieszonym:

RQ=\dfrac{1}{2} g{\Delta t}^2 \mbox{, czyli } g=\dfrac{2 RQ}{\Delta t^2}.

Przyspieszenie grawitacyjne planety oznaczyliśmy g. Należy więc drogę RQ oraz czas wyrazić za pomocą wielkości geometrycznych. Figura QRPx jest równoległobokiem, na przedłużeniu QX leży v: punkt przecięcia z CP. Planeta spada w kierunku Px, ale z geometrii elipsy łatwo jest wyznaczyć Pv, dlatego wprowadzamy ten pomocniczy punkt v. Mamy

Pv\approx (Qv)^2 \dfrac{d_1}{2d_2^2}\mbox{ (*)},

gdzie znak \approx oznacza równość w granicy, gdy Q\rightarrow P; 2d_1 oraz 2d_2 są tzw. średnicami sprzężonymi elipsy GCP oraz DCK (linia DK jest równoległa do stycznej PR w punkcie P). Równanie (*) wynika z własności elipsy, szczegóły na końcu wpisu.

Korzystamy teraz z podobieństwa trójkątów Pxv i PEC. Mamy więc

RQ=Px=\dfrac{PE}{PC}Pv=\dfrac{a}{d_1}Pv.

Ostatnia równość wynika z tzw. lematu Newtona, por. niżej (**).

Do przyspieszenia wchodzi jeszcze czas, który możemy zastąpić polem trójkąta EPQ o podstawie EP=r i wysokości QT. Dwa trójkąty prostokątne QTx oraz PFE są podobne, zatem

QT=Qx\dfrac{PF}{PE}=Qx\dfrac{PF}{a}.

Wstawiając wszystkie znalezione zależności do wyrażenia na przyspieszenie, otrzymujemy

g\approx\dfrac{2a^3}{(d_2PF)^2}\dfrac{(Qv)^2}{(Qx)^2}\dfrac{1}{r^2}\sim\dfrac{1}{r^2}.

W ostatniej równości korzystamy z faktu, że iloczyn d_2PF nie zależy od położenia punktu P, por. niżej (***), oraz z faktu, że iloraz odległości Qv i Qx jest w granicy równy 1.

Prowadzenie obliczeń algebraicznych oraz przejścia graniczne przy użyciu proporcji nie były najwygodniejsze. Newton był jednak skrajnym konserwatystą i używał takiej techniki z przyczyn czysto ideologicznych: uważał bowiem geometrię grecką za doskonalszą niż analityczna geometria Kartezjusza. W młodości, korzystając z podejścia analitycznego, otrzymał wiele ważnych, do dziś podręcznikowych wyników, jak np. różne wyrażenia na promień krzywizny. Teraz, pisząc dzieło życia, świadomie wybrał metodę klasycznych proporcji. Mówił nawet, że specjalnie napisał swoje Matematyczne zasady trudnym językiem, żeby zniechęcić ludzi o powierzchownej znajomości matematyki.

Rysunek pochodzi z pracy J.A. Lohne, The Increasing Corruption of Newton’s Diagrams, „History of Science”, t. 6 (1968), s. 81 (rysunki u Newtona zwykle nie są najlepsze, nie wszyscy wydawcy przerysowywali je ze zrozumieniem).

Szczegóły techniczne

Elipsę na płaszczyźnie a’ można otrzymać jako rzut prostokątny okręgu leżącego na płaszczyźnie a.

projection

newton_elipsa

 

Dla okręgu nietrudno wyprowadzić zależność

y=\dfrac{x^2}{2r-y}\approx\dfrac{x^2}{2r}.

Ostatnia równość staje się dokładna, gdy y\rightarrow 0, r jest promieniem okręgu. W rzucie dwie prostopadłe średnice okręgu przejdą w dwie średnice sprzężone elipsy. Proporcje równoległych odcinków nie mogą się zmienić, więc

\dfrac{x}{r}=\dfrac{x'}{d_2} \mbox{ oraz } \dfrac{y}{r}=\dfrac{y'}{d_1}.

Stąd natychmiast otrzymujemy (*). Punkty I oraz S są ogniskami elipsy. Punkt H na rysunku w tekście zasadniczym otrzymujemy, odkładając na linii PE odległość PI=PH. Zatem trójkąt PIH jest równoramienny. Linia PF prostopadła do stycznej (normalna) jest dwusieczną kąta IPH (jest to znana własność elipsy: promienie światła wysłane z jednego ogniska skupiają się w drugim). PF jest więc symetralną IH i odcinek IH jest równoległy do EK. Kąt ISH jest przecięty tą parą równoległych. Ponieważ SC=CH (oba ogniska są równoodległe od środka elipsy), więc z tw. Talesa, mamy SE=EI. Suma odległości punktu P od obu ognisk jest stała i równa podwojonej dużej półosi a:

2a=SP+PH=2EI+2IP=2EP\mbox{, czyli }EP=a. \mbox{(**)}

Twierdzenie to nazywa się czasem lematem Newtona.

Aby otrzymać (***), rozważmy pole równoległoboku opisanego na elipsie, jest ono równe PFd_2 i nie zależy od położenia punktu P, ponieważ rzutując okrąg z opisanym na nim kwadratem na płaszczyznę a’, zawsze otrzymamy takie samo pole powierzchni równoległoboku na tej płaszczyźnie, bez względu na orientację kwadratu na płaszczyźnie a. Jest to tzw. drugie tw. Apoloniusza, znane niemal dwa tysiące lat przed Newtonem.