Jak Max Planck nie dostał Nagrody Nobla (1908)

Pisałem jakiś czas temu, w jaki sposób Max Planck na dwa tygodnie przed końcem XIX stulecia wyprowadził ważny wzór opisujący promieniowanie termiczne (dokładnie: ciała doskonale czarnego). On sam uważał słusznie, iż to jego najważniejsza praca. Dziś patrzymy na nią jako na pierwszą pracę kwantową, a więc wstęp do najważniejszej dziedziny fizyki w XX wieku. Jednak w roku 1908 widziano to zupełnie inaczej i Planck nie otrzymał Nagrody Nobla właśnie z powodu kwantów. Chciano mu ją wówczas przyznać z zupełnie innych powodów, choć za tę samą pracę.

Nagroda Nobla zawsze była do pewnego stopnia wynikiem wewnętrznych zakulisowych dyskusji, a nawet intryg, wśród uczonych szwedzkich. I w sumie dobrze o nich świadczy fakt, że tak rzadko trafiała ona w niepowołane ręce. W roku 1908 ogromny wpływ na nagrody w dziedzinie chemii i fizyki miał Svante Arrhenius, wybitny fizykochemik, który chciał podkreślić wagę istnienia atomów. Nie był to jeszcze wówczas fakt zupełnie bezsporny, choć główna batalia już się rozegrała: w roku 1905 i 1906 Albert Einstein i Marian Smoluchowski opracowali teorię ruchów Browna, a w roku 1908 Jean Perrin przeprowadził już wiele doświadczeń potwierdzających ową teorię (wyznaczając przy okazji liczbę Avogadro). Trudno byłoby podać jakiekolwiek inne wyjaśnienie tego zjawiska. Arrhenius myślał jednak o czym innym, Perrin został nagrodzony dużo później. Ernest Rutherford i Hans Geiger wykazali, że cząstki α emitowane przez niektóre substancje promieniotwórcze mają masę atomu helu i dodatni ładunek dwa razy większy niż ładunek elektronu (ujemny). Wciąż nie bardzo było wiadomo, jak wyglądają atomy, ale fakt, że ładunki cząstek były wielokrotnością ładunku elementarnego, silnie przemawiał za jakąś formą atomizmu. Także z pracy Maksa Plancka wynikała ta sama wartość ładunku elementarnego – była ona zresztą dokładniejsza niż ta wynikająca z pomiarów Rutherforda. Ta sama wartość wynikająca z pomiarów w tak odległych od siebie dziedzinach, jak promieniotwórczość i promieniowanie termiczne, była silnym argumentem za istnieniem ładunku elementarnego (także bezpośrednie pomiary ładunku elektronu dawały mniej więcej to samo).

W jaki sposób z prawa Plancka wynika ładunek elementarny? Do prawa Plancka wchodzą dwie stałe, oznaczane k i h – pierwszą nazywamy dziś stałą Boltzmanna, drugą – stałą Plancka. Otóż Planck pokazał, że stała k to nic innego niż stała gazowa R podzielona przez liczbę Avogadro N:

k=\dfrac{R}{N},

ponieważ stała gazowa była dokładnie znana, można było wyznaczy liczbę Avogadro, czyli najważniejszą stałą atomową. Dla przypomnienia: jest to liczba atomów w gramoatomie, znając N, natychmiast można obliczyć, ile waży który atom. W dodatku jeśli podzielić stałą Faradaya, znaną z elektrolizy, przez N, otrzymuje się wielkość ładunku elementarnego.

Arrhenius musiał przy okazji wykonać trochę logicznej ekwilibrystyki, gdyż chciał, aby nagrodę z chemii dostał Rutherford, a z fizyki jedynie Planck. Pierwsza połowa planu się powiodła, co Rutherford skomentował, że obserwował różne przemiany atomów, ale żadna nie nastąpiła tak szybko jak jego przemiana z fizyka w chemika (statystycznie rzecz biorąc, było wszystko w porządku, bo w poprzednich latach małżonkowie Curie dostali nagrodę z fizyki za głównie chemiczną pracę wyodrębnienia nowych pierwiastków).

Druga połowa planu się nie powiodła. Po pierwsze wysuwano argument, iż praca Plancka byłaby niemożliwa bez dokładnych pomiarów. I była to szczera prawda. Planck znalazł ścisły wzór opisujący bardzo dokładne pomiary kolegów. Najpierw w roku 1899 Ernst Pringsheim i Otto Lummer zauważyli, że promieniowanie obserwowane w podczerwieni odbiega od tzw. prawa Wiena, przez jakiś czas uważanego za ścisłe. Było ono połączeniem pewnego rozumowania ze zgadywaniem, co jest kombinacją wcale w nauce nierzadką.

lummer_prings

Potem, w roku 1900, Heinrich Rubens i Ferdinand Kurlbaum zmierzyli jeszcze wyraźniejsze odstępstwa od prawa Wiena i od tej chwili Planck miał nad czym myśleć.

RubensKurlbaum

Wykres przedstawia natężenie promieniowania w zależności od temperatury przy długości fali 24 μm, a więc daleko w podczerwieni, autorzy przesunęli granicę możliwości aż do 60 μm, co było poważnym osiągnięciem. Linia ciągła to wzór Plancka, kółka to punkty doświadczalne.

Oczywiście wyprowadzenie prawdziwej i fundamentalnej zależności warte jest Nagrody Nobla, choć można się zastanawiać, czy nie powinna ona przypaść także niektórym przynajmniej z eksperymentatorów wykonujących te pomiary.

Pojawił się także drugi argument przeciwko Planckowi, i on ostatecznie przeważył. Wiosną roku 1908 na kongresie matematyków w Rzymie wystąpił Hendrik Antoon Lorentz, najbardziej szanowany fizyk-teoretyk Europy, i wykazał, że ze znanej fizyki nie może wynikać wzór Plancka. Fizyka, dziś nazywana klasyczną, przewiduje bowiem dla promieniowania to, co przedstawia czarna linia na poniższym wykresie.

Black_body

Jest to tzw. prawo Rayleigha-Jeansa, które przewiduje, że ilość promieniowania dla każdej częstości powinna rosnąć proporcjonalnie do temperatury bezwzględnej (na wykresie wyżej widać, że prawo Rayleigha wyraźnie odbiega od danych Rubensa i Kurlbauma). Ponadto przewiduje ono, że im wyższa częstość, tym silniejsze powinno być promieniowanie: każdy piecyk byłby źródłem zabójczego promieniowania rentgenowskiego i gamma, co jest oczywiście bez sensu i otrzymało nazwę katastrofy w nadfiolecie. Lorentz wykazał szczegółowo to, co trzy lata wcześniej napisał Einstein: że z fizyki klasycznej wynika prawo Rayleigha, które jest absurdalne. Einstein jednak dopiero debiutował, Lorentza natomiast usłyszeli wszyscy. Jasne się stało wszem wobec, że druga stała wprowadzona przez Plancka w jakiś tajemny sposób pozwala uniknąć katastrofy w nadfiolecie. Dzieje się tak, ponieważ Planck uznał, że energię należy do celów rachunkowych podzielić na porcje o wielkości h\nu, gdzie \nu jest częstością. W zasadzie Planck traktował to jak pewien wybieg formalny. W sumie jego praca była prawidłowa, ale on sam nie wiedział dlaczego. Jedynie Einstein rozumiał to lepiej, ale choć zaczęto już słuchać, co mówi, nikt nie dawał się jeszcze przekonać. Był urzędnikiem biura patentowego i w tych latach jedynym prawdziwym zwolennikiem teorii kwantowej, zastanawiając się nad kwestiami, które koledzy mieli zrozumieć dopiero za kilka lat.

Na konferencji w Rzymie był także matematyk Gösta Mittag-Leffler, który dowiedział się, że teoria Plancka bynajmniej nie jest pewna, wprowadza bowiem jakieś kwanty energii h\nu. Wrócił z tym do Szwecji i sprawa nagrody dla Maksa Plancka upadła. Otrzymał ją dziesięć lat później właśnie za kwantowanie. A w roku 1908 wygrał kandydat popierany przez Francuzów, Gabriel Lippmann, który wynalazł system fotografii barwnej, pomysłowy, lecz zupełnie niepraktyczny i nigdy na szerszą skalę nie zastosowany. Lippmann był już od dwudziestu lat członkiem Akademii Nauk (do której Maria Skłodowska-Curie nigdy nie weszła) i pozostawił po sobie np. takie zdjęcie papugi.Parrot_photo_made_by_Gabriel_Lippmann_in_1891

Max Planck: początek fizyki kwantowej (1900)

Max Planck był profesorem fizyki teoretycznej na uniwersytecie w Berlinie, przed nim katedrę tę zajmował Gustav Kirchhoff, współtwórca analizy widmowej, po Plancku objął ją Erwin Schrödinger, jeden z pionierów mechaniki kwantowej. Widać w tym pewną ciągłość: Kirchhoff pierwszy badał promieniowanie termiczne, Planck wyjaśnił jego podstawową własność, wprowadzając kwanty energii, a Schrödinger należał do tych, którzy dokończyli rewolucji kwantowej w fizyce.

Max Planck

W roku 1900 Planck przekroczył już czterdziestkę, ale najważniejsze w jego życiu naukowym miało się dopiero wydarzyć. Wiadomo, że każde ciało wysyła promieniowanie termiczne, dzięki temu można np. wykrywać w ciemności ludzi albo zwierzęta. Promieniowanie ciała doskonale czarnego to pewien teoretyczny ideał: tak promieniowałoby ciało o stuprocentowej zdolności pochłaniania energii. Najlepszym doświadczalnym modelem takiego ciała jest niewielki otwór w pudełku: fale wpadające do otworu mają niewielkie prawdopodobieństwo wydostania się z niego, wewnątrz pudełka (którego ścianki są utrzymywane w pewnej temperaturze T) mamy promieniowanie elektromagnetyczne w stanie równowagi cieplnej ze ściankami. Oczywiście przez taki otwór część promieniowania będzie się wydostawać na zewnątrz: otwór będzie świecił. Kirchhoff wyjaśnił, że promieniowanie takiego idealnego ciała doskonale czarnego scharakteryzowane jest tylko przez temperaturę, nie zależy od materiału, z którego wykonamy pudełko. W dodatku znając promieniowanie ciała doskonale czarnego, można obliczyć, jak będzie promieniować dowolne ciało rzeczywiste.

Black_body

Tak wyglądają widma ciała doskonale czarnego dla różnych temperatur. Czarna krzywa jest przewidywaniem fizyki przedkwantowej: obie zależności nie tylko są różne, ale jeszcze ta krzywa przedkwantowa nieograniczenie rośnie dla krótkich fal. Pole pod krzywą rozkładu widmowego promieniowania ma sens całkowitej mocy wysyłanej przez ciało (z jednostki powierzchni). Wynikałoby więc z tego, że według fizyki dziewiętnastowiecznej każde ciało promieniuje nieskończenie wiele energii w jednostce czasu, co jest oczywiście niemożliwe. Mamy więc tzw. katastrofę w nadfiolecie i problem do wyjaśnienia.

W roku 1900 dzięki nowym pomiarom Heinricha Rubensa i Ferdinanda Kurlbauma stało się jasne, że dotychczasowa fizyka nie nadaje się do opisu obserwowanej krzywej. Max Planck najpierw odgadł równanie opisujące rozkład promieniowania, a następnie pokazał, w jaki sposób można ten rozkład otrzymać teoretycznie. Rzecz wymagała wprowadzenia osobliwego założenia o skwantowaniu energii. Wróćmy do obrazu pudełka wypełnionego promieniowaniem termicznym. Ścianki tego pudełka stale wysyłają oraz pochłaniają fale elektromagnetyczne. Oznacza to, że drgają tam jakieś ładunki: fala elektromagnetyczna wprawia bowiem ładunek w ruch drgający i odwrotnie: każdy drgający ładunek wysyła falę elektromagnetyczną. Z punktu widzenia teorii ścianki pudełka to zbiór oscylatorów czyli układów drgających. Każdy z nich, tak jak wahadło, ma swoją własną częstość drgań. Im wyższa temperatura, tym intensywniej oscylatory drgają. W równowadze termodynamicznej ta sama ilość energii będzie wysyłana i pochłaniana w jednostce czasu. Należałoby więc obliczyć, jaką średnią energię będzie miał oscylator o częstotliwości \nu w zadanej temperaturze. Fizyka klasyczna przewiduje, że każdy oscylator, bez względu na częstość, będzie miał taką samą średnią energię równą kT, gdzie k jest stałą Boltzmanna.

Planck założył natomiast, że oscylatory mogą mieć jedynie energie równe

E=n\varepsilon=nh\nu,

gdzie n jest liczbą naturalną od zera począwszy, a h – nową stałą fizyczną, zwaną obecnie stałą Plancka. Jeśli w jakimś wzorze fizyki pojawia się stała Plancka, to znaczy to, że mamy do czynienia ze wzorem kwantowym. Gdyby stała Plancka była równa zero, obowiązywałaby fizyka klasyczna (co oznacza np., że niemożliwe byłyby stabilne atomy). Oczywiście w roku 1900 Max Planck nie wiedział jeszcze, że odkrywa zarysy nowego kontynentu, choć musiał zdawać sobie sprawę, że dotyka czegoś fundamentalnego.

Mając założenie o kwantowaniu, łatwo już obliczyć średnią energię oscylatora. Planck zrobił to, korzystając z pojęcia entropii. Entropia jest wielkością, którą można zdefiniować makroskopowo i w takiej postaci została ona wprowadzona do fizyki. Później Ludwig Boltzmann pokazał, że entropia jest miarą nieuporządkowania. Co to znaczy w przypadku naszego zbioru oscylatorów? Załóżmy, że mamy wielką liczbę N oscylatorów o danej częstości. Ponieważ energia jest skwantowana, więc całkowita energia naszego układu musi być równa

E=P\varepsilon,

gdzie P jest jakąś liczbą całkowitą. Entropia S związana jest z liczbą sposobów W, na jakie można rozmieścić P porcji energii między N oscylatorów:

S=k\ln W.

Gdzie k to stała Boltzmanna. W naszym przypadku problem kombinatoryczny najłatwiej narysować.

498px-Einstein_solids_1.svg498px-Einstein_solids_2.svg450px-Einstein_solids_3.svg

(obrazki są z Wikipedii, ale pomysł takiego obliczenia W opisali P. Ehrenfest oraz H. Kamerlingh-Onnes)

Mamy dwa rodzaje elementów: N-1 przegródek „między” oscylatorami oraz P elementarnych energii \varepsilon do rozmieszczenia. Inaczej mówiąc, ze zbioru N+P-1 elementowego musimy wybrać P elementów jako koraliki, reszta to przegródki. Liczba możliwości to liczba kombinacji

W=\dfrac{(N+P-1)!}{(N-1)!P!}.

Im wyższa energia, tym większa liczba kwantów energii („koralików”) i tym więcej sposobów na ich rozmieszczenie – co oznacza że rośnie entropia.

Obliczając na tej podstawie entropię, a następnie wyznaczając energię układu oscylatorów jako funkcję temperatury, otrzymamy dla danego rodzaju oscylatorów

\dfrac{E}{N}=\dfrac{\varepsilon}{\exp{\frac{\varepsilon}{kT}}-1} \mbox{. (*)}

Tego samego wyrażenia użył później Einstein dla drgań atomów w sieci krystalicznej. Jeśli uwzględnimy, że \varepsilon=h\nu oraz że liczba oscylatorów w przypadku ścianek pudełka 3D rośnie jak \nu^2, otrzymamy rozkład Plancka:

E(\nu)\Delta\nu\sim \nu^2\dfrac{h\nu}{\exp{\frac{h\nu}{kT}}-1}\Delta\nu=\dfrac{h\nu^3}{\exp{\frac{h\nu}{kT}}-1}\Delta\nu.

Jednym z najpiękniejszych przykładów rozkładu Plancka jest kosmiczne promieniowanie tła.

spectrum

Jest ono z wielką dokładnością opisane krzywą Plancka i ma temperaturę niecałe 3K, co oznacza, że większość energii przypada w nim na mikrofale o długościach milimetrowych. Trudno w tym zakresie prowadzić pomiary z Ziemi, toteż zwykle dokonuje się tego z satelitów. Najdoskonalsza do tej pory aparatura pomiarowa badająca promieniowanie tła nie przez przypadek nazwana została misją PLANCK.

(*) Pokażemy, jak można z entropii znaleźć średnią energię w funkcji temperatury. Klasyczna definicja entropii wiąże jej przyrost z ilością ciepła \Delta Q oraz temperaturą:

\Delta S=\dfrac{\Delta Q}{T}=\dfrac{\Delta E}{T}.

Druga równość odnosi się już do przypadku naszych oscylatorów. Musimy więc obliczyć, o ile zmieni się entropia, gdy dostarczymy jakąś niewielką dodatkową energię \Delta P\varepsilon. Zmiana entropii jest równa

\Delta S=k\ln\dfrac{(N+P+\Delta P)!N!P!}{N!(P+\Delta P)!(N+P)!}=k\Delta P\ln\dfrac{N+P}{P}.

Korzystamy tu z \Delta P\ll P, a także pominęliśmy jedynki jako dużo mniejsze od naszych liczb P oraz N. Możemy uzyskane wyrażenie wstawić do związku

\dfrac{\Delta S}{\Delta E}=\dfrac{1}{T}.

Odwracając to równanie i pamiętając, że E=P\varepsilon, otrzymujemy wynik (*).

Wyrażenie kwantowe przechodzi w klasyczne, gdy h\nu=\varepsilon\ll kT, mamy wtedy:

\dfrac{\varepsilon}{\exp{\frac{\varepsilon}{kT}}-1}\approx kT.

Wynika to z faktu, że dla wartości x\ll 1 funkcję wykładniczą można przybliżyć \exp x\approx 1+x. Dla małych częstości przybliżenie klasyczne jest prawidłowe, jednak częstości promieniowania nie są ograniczone z góry, więc aby uzyskać poprawną zależność, potrzebny jest wzór kwantowy.

Dodatkowa proporcjonalność do \nu^2 we wzorze Plancka jest sprawą czysto techniczną: w trójwymiarowym pudełku liczba dozwolonych drgań (czyli fal stojących) rośnie jak pole powierzchni kuli.