Spadający deszcz i czarna dziura Schwarzschilda

Opiszemy za Thanu Padmanabhanem prosty, choć nie całkiem prawidłowy, sposób otrzymania metryki czarnej dziury Schwarzschilda. Fizycznie jest to zagadnienie pola grawitacyjnego wokół sferycznej masy M. Spróbujmy znaleźć metrykę daleko od naszego ciała, w odległości r od centrum. Wyobrażamy sobie infinitezymalne układy współrzędnych: jeden xy nieruchomy względem centrum, a drugi x_{in}y_{in} swobodnie spadający ku centrum z nieskończoności. Układ swobodnie spadający jest lokalnie inercjalny, więc metryka w nim ma szczególnie prostą postać metryki Minkowskiego (wszędzie c=1):

ds^2=dt_{in}^2-d\vec{r}_{in}\,^2.

Zakładamy teraz, że przejścia od układu spadającego do nieruchomego możemy dokonać za pomocą transformacji Galileusza, czyli tak, jakbyśmy nie uczyli się nigdy o Einsteinie:

\begin{cases}d\vec{r}_{in}=d\vec{r}-\vec{v}dT \\  dt_{in}=dT.\end{cases}

Wstawiając tę transformację do metryki swobodnej, otrzymujemy

ds^2=(1-v^2)dT^2 +2\vec{v}\cdot \vec{dr} dT -d\vec{r}\,^2.

Newtonowska prędkość ciała spadającego z nieskończoności jest równa prędkości ucieczki:

v=\sqrt{\dfrac{2GM}{r}}.

Ostatecznie nasza metryka wygląda we współrzędnych radialnych następująco:

ds^2=\left(1-\dfrac{2GM}{r}\right)dT^2-2\sqrt{\dfrac{2GM}{r}}dr dT-d\vec{r}\,^2.

Jest to metryka spadającego deszczu, w której czas jest czasem własnym spadających na centrum cząstek. Inaczej metryka Painlevé’go-Gullstranda. Nasza procedura nie jest prawidłowym wyprowadzeniem, ale nieco ułatwia wyobrażenie sobie, skąd takie wyrażenie może pochodzić. Ostateczną weryfikacją byłoby obliczenie dla tej metryki tensora Ricciego i wykazanie, że znika on dla wszystkich r>0.

Nietrudno pokazać, że spadanie z prędkością

\dfrac{dr}{dT}=-\sqrt{\dfrac{2GM}{r}},

jest ruchem geodezyjnym. Jeśli w metryce wydzielimy po prawej stronie dT^2, otrzymamy (dla ruchu radialnego d\vec{r}\,^2=dr^2):

ds^2=\left[1-\left(\dfrac{dr}{dT}+\sqrt{\dfrac{2GM}{r}}\right)^2\right]dT\,^2\le dT\,^2.

Maksymalne ds otrzymamy więc, gdy znika nawias zwykły w ostatnim wyrażeniu i wtedy ds=dT. Pokazaliśmy już poprzednio, jak wyglądają stożki świetlne w tych współrzędnych, łatwo zauważyć istnienie horyzontu wokół centralnej osobliwości r=0. Można też przejść od naszych współrzędnych deszczu do zwykłej metryki Schwarzschilda (odwrotną drogę przebył Painlevé w 1921 r.). Należy w tym celu zmienić definicję czasu:

dT=dt+\dfrac{\sqrt{\dfrac{2GM}{r}}}{1-\dfrac{2GM}{r}}dr.

Funkcję po prawej stronie można otrzymać, pisząc dT=dt+f(r)dr i tak dobierając funkcję f(r), żeby znikł wyraz niediagonalny z dr dt.

Reklamy

Paul Painlevé, Einstein i czarne dziury (1921-1922)

Dzieje rodziny Paula Painlevé’go mogłyby posłużyć jakiemuś nowemu Balzacowi: dawni winogrodnicy, bednarze i kamieniarze, w pokoleniu dziadków zajęli się drukarstwem i litografią, przyszły ojciec uczonego z drukarza-litografa przeobraził się w przedsiębiorcę, producenta farby drukarskiej. Paul uczył się w renomowanych liceach paryskich Saint-Louis i Louis-le-Grand, a studiował matematykę w prestiżowej École normale supérieure, będącej znakomitym wstępem zarówno do kariery naukowej, jak politycznej. (Jej absolwenci zdobyli trzynaście Nagród Nobla, dziesięć Medali Fieldsa i dwie Nagrody Abela). Painlevé uzupełniał wykształcenie matematyczne w Getyndze u Hermanna Schwarza i Feliksa Kleina. W roku 1900, będąc jeszcze przed czterdziestką został członkiem Akademii Nauk, co naszej rodaczce Marii Skłodowskiej-Curie nie udało się nigdy, pomimo dwóch Nagród Nobla. Francuskie elity naukowe były mocno konserwatywne i nie każdy mógł zostać do nich dopuszczony. Painlevé interesował się także lotnictwem: teoretycznie – obliczając siłę nośną oraz praktycznie – odbywając w roku 1908 z Wilburem Wrightem ponadgodzinny lot na wysokości 10 m, przebyli 55 km i szczęśliwie wylądowali, był to ówczesny rekord. Alma Mahler wspomina, że Painlevé należał do entuzjastów symfonii Gustava Mahlera i jeździł specjalnie w różne miejsca, aby ich wysłuchać. Razem z generałem Georges’em Picquartem grywali je podobno na fortepianie w aranżacjach na cztery ręce. Wyciągi fortepianowe dzieł symfonicznych czy oper były dość popularne w czasach, gdy muzyki można było słuchać jedynie na żywo, a fortepiany lub pianina stały w niemal każdym mieszczańskim domu. Z Picquartem łączyły Painlevé’go poglądy w sprawie Dreyfusa, to właśnie Picquart udowodnił, że nie Alfred Dreyfus, lecz Ferdinand Esterhazy był szpiegiem w armii francuskiej. Przez kraj przetoczyła się wcześniej zajadła kampania antysemicka, wysokie dowództwo armii nie chciało przyznać się do błędu i Dreyfus został zrehabilitowany przeszło dziesięć lat po degradacji i uwięzieniu na Diabelskiej Wyspie. W 1910 r. Painlevé został socjalistycznym deputowanym do parlamentu. Od tej pory zajmował się czynnie polityką, bywał ministrem, przewodniczącym Izby Deputowanych, a nawet premierem. W 1921 roku zaczął zabiegać o wizytę Einsteina w Paryżu, niewątpliwie pragnąc w ten sposób zbliżyć oba narody po krwawej wojnie. W następnym roku Einstein rzeczywiście przyjął zaproszenie i przyjechał, o czym pisałem.

Painlevé interesował się nie tylko aspektem politycznym, zajął się bliżej teorią względności, z czego wynikło kilka prac oraz ożywione dyskusje z Einsteinem w Paryżu. Matematyk odkrył nowy sposób opisu pola grawitacyjnego wokół masy punktowej, z czego wyciągnął dość radykalne wnioski, osłabiające w jego mniemaniu, teorię względności. Einstein, nie zgadzając się z tymi wnioskami, nie potrafił wtedy udzielić bardziej konkretnej odpowiedzi. Dyskusje te miały także pewne praktyczne następstwa. Otóż szwedzki okulista, ale i matematyk, Allvar Gullstrand także odkrył ową metrykę Gullstranda-Painlevé’go, jak to się dziś nazywa. I uznał, podobnie, jak Painlevé, że teoria względności nie daje jednoznacznych przewidywań. Oznaczałoby to, że światowa sensacja wokół teorii względności po odkryciu ugięcia światła gwiazd w pobliżu tarczy słonecznej była mocno na wyrost. Gullstrand opiniował prace Einsteina dla Komitetu Noblowskiego i w roku 1921 nagrody nie przyznano. Einstein był najpoważniejszym kandydatem, ale Gullstrand podważał wartość jego prac. W końcu Nagrodę przyznano Einsteinowi dopiero w roku 1922 (za poprzedni rok), a więc po długim bardzo namyśle. W dodatku uznano, że bezpieczniej będzie zostawić na boku kwestię teorii względności, toteż przyznano Nagrodę za wyjaśnienie zjawiska fotoelektrycznego – w tym przypadku nie było wątpliwości, że przewidywania Einsteina zostały wyraźnie potwierdzone eksperymentalnie. Painlevé wyrażał swą krytykę o tyle bardziej dyplomatycznie, że uznawał zarazem wartość poznawczą podejścia Einsteina i zestawiał go z Lagrange’em. Obaj jednak, zarówno Francuz, jak Szwed, mieli spore zastrzeżenia.

Opiszę, na czym polegały zastrzeżenia Painlevé’go i co odpowiadał mu Einstein (na ile to dziś wiadomo). W drugiej części opiszę metrykę Gullstranda-Painlevé’go i jej konsekwencje: czarną dziurę. Uczeni pomiędzy rokiem 1915 a latami pięćdziesiątymi XX stulecia wiele razy natykali się na zagadnienie czarnych dziur i na rozmaite sposoby cofali się przed ich uznaniem, błędnie interpretując swoje równania. Pokazuje to, że interpretacja formalizmu matematycznego była tu niesłychanie trudnym problemem, znacznie poważniejszym niż formalne przekształcenia, które w różnych wersjach wykonywało wielu uczonych.

Ogólna teoria względności ma tę własność, że możemy używać w zasadzie niemal dowolnych czterech współrzędnych dla opisania miejsca i czasu. Same współrzędne nie muszą nic oznaczać z fizycznego punktu widzenia, tę samą sytuację można więc opisywać na różne sposoby. Często nie widać, że owe różne opisy dotyczą w istocie tej samej sytuacji. Tak było w przypadku metryki Gullstranda-Painlevé’go.

Czasoprzestrzeń wokół punktowej masy m w teorii Einsteina opisana jest metryką Schwarzschilda:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2-\dfrac{dr^2}{1-\dfrac{r_S}{r}}-r^2 d\varphi^2.

Stała r_S jest promieniem Schwarzschilda (dziś: promieniem horyzontu czarnej dziury). Painlevé i niezależnie od niego Gullstrand odkryli, że można tę samą sytuację opisać także za pomocą innej metryki:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2+2\sqrt{\dfrac{r_S}{r}}dr dt-dr^2-r^2 d\varphi^2.

W obu przypadkach zapisałem metrykę tylko w płaszczyźnie równikowej, żeby mniej pisać (mamy wtedy jedynie zmienne t, r,\varphi). Painlevé podał także inne możliwe postaci owej metryki, sugerując, że dowodzi to, iż teoria Einsteina jest w istocie pusta, można bowiem wyciągnąć z niej rozmaite wnioski dla tej samej sytuacji fizycznej. Np. w pierwszej metryce przestrzeń trójwymiarowa nie jest euklidesowa, a w drugiej jest. Ergo wnioski Einsteina dotyczące światła w polu grawitacyjnym Słońca oraz ruchu Merkurego są nieuzasadnione. Podobnie rozumował Gullstrand, słuchany uważnie przez Komitet Noblowski.

Painlevé uznał, że wyciąganie z postaci metryki wniosków fizycznych to „czysta fikcja”. Zakomunikował to na posiedzeniu paryskiej Akademii Nauk i uprzejmie doniósł o tym listownie Einsteinowi. Na co Einstein, członek berlińskiej Akademii Nauk, równie uprzejmie oznajmił, że „metryczna interpretacja ds^2 nie jest żadną «pure imagination», lecz samym sednem teorii (der innerste Kern)” [Einstein Papers, t. 12, s. 369]. Podkreślał też, że same współrzędne nie znaczą nic, trzeba z nich dopiero wyciągnąć wnioski fizyczne nt. czasu i odległości.

Pewne zbliżenie stanowisk nastąpiło podczas dyskusji w Paryżu, choć Painlevé pisał już mniej bojowo, wkrótce zresztą wrócił do polityki. Paul Langevin podsumował to, mówiąc, że byłoby lepiej, gdyby Painlevé przeczytał o teorii względności, zanim wystąpił ze swą krytyką, a nie dopiero później. Tak to w akademiach bywa: ludzie dostają się do nich dzięki dawnym osiągnięciom, a nie stanowi to żadnej gwarancji, że dobrze rozumieją nowości naukowe. W dodatku akademie (przynajmniej wtedy) drukowały wszystko, co ich członkowie uznali za ciekawe. Dyskusja w paryskiej Akademii Nauk na temat teorii względności w latach 1921-1922 nie stała na zbyt wysokim poziomie. Akademicy byli na ogół niechętni Einsteinowi. Na propozycję, aby go przyjąć na członka-korespondenta, jeden z szacownych uczonych zareagował stwierdzeniem, że trudno wyróżniać w ten sposób człowieka, który „zniszczył mechanikę”.

Podczas wizyty Einsteina matematyk Jacques Hadamard zapytał o kwestię osobliwości metryki Schwarzschilda dla r=r_S. Niemiecki uczony przekonywał, a nawet poparł pewnymi rachunkami, które przeprowadził z dnia na dzień, że taka „katastrofa Hadamarda” nie może się zdarzyć w rzeczywistości, ponieważ zanim skoncentruje się materię pod promieniem Schwarzschilda, to wcześniej ciśnienie wewnątrz takiej gwiazdy stanie się nieskończone. Nie miał w tej kwestii racji, ale także później starał się dowodzić, że czarne dziury są niemożliwe. Einstein martwił się o spójność własnej teorii, ale wyrażał też dość powszechne stanowisko, Arthur Eddington, największy specjalista od budowy wnętrza gwiazd, twierdził, że z pewnością musi istnieć prawo fizyczne zabraniające takiego upakowania materii.

Jak można spojrzeć na tę dyskusję z perspektywy czasu, mając po swej stronie „łaskę późnego urodzenia”? Na wątpliwości Hadamarda (jak najbardziej uzasadnione) odpowiada metryka Painlevé’ego. Wystarczy spojrzeć, że nic się tam nie dzieje przy r=r_S (także jej wyznacznik jest różny od zera). Zatem w innych współrzędnych osobliwości tu nie ma i Einstein nie musiał się męczyć żadnymi rachunkami. Katastrofa Hadamarda jest osobliwością konkretnych współrzędnych Schwarzschilda, to coś w rodzaju „osobliwości” współrzędnych geograficznych na biegunie ziemskim, gdzie zbiegają się wszystkie południki. Wiemy jednak, że nic się tam złego nie dzieje z Ziemią.

W dodatku metryka Painlevé’go ze znakiem minus przed pierwiastkiem też stanowi rozwiązanie równań Einsteina. Nietrudno zobaczyć, co wtedy otrzymamy dla światła, tzn. gdy ds^2=0. Załóżmy dodatkowo, że promień świetlny biegnie radialnie, tzn. d\varphi=0. Dostajemy

0=\left(1-\dfrac{r_S}{r}\right)dt^2 -2\sqrt{\dfrac{r_S}{r}} dr dt-dr^2.

Dzieląc obie strony przez dt^2, dostajemy równanie kwadratowe dla prędkości radialnej. Jego rozwiązania dane są wyrażeniem:

\dfrac{dr}{dt}=\pm 1 -\sqrt{\dfrac{r_s}{r}}.

Równanie to opisuje dwa skrajne promienie świetlne: spadający na centrum i oddalający się od centrum. Gdy r>r_S jeden z nich zbliża się do centrum, drugi oddala. Kiedy jednak przekroczymy punkt „katastrofy Hadamarda” i r<r_S oba promienie zbliżają się ku centrum. Znaczy to, że nawet promień świetlny nie może się wydostać poza obszar r<r_S, czyli spod horyzontu czarnej dziury.

Przejście do współrzędnych Painlevé’go nie zmienia współrzędnej r, lecz jedynie czas. Jest on teraz mierzony jako czas własny cząstek spadających z nieskończoności na centrum. Są to współrzędne padającego deszczu, jak nazywają to Edwin F. Taylor i John Archibald Wheeler (*) w swej książce Exploring Black Holes.

 

 

(Na rysunku odległości i czasy wyskalowane są w promieniach Schwarzschilda)

Gdy cząstka mija horyzont, jej stożek przyszłości zaczyna być zwrócony ku wnętrzu, a to znaczy, że niebawem spadnie na centralną osobliwość. Drugi znak we współrzędnych Painlevé’go odpowiadałby wznoszeniu się z centrum do nieskończoności. Prawa grawitacji nie mówią nic na temat kierunku czasu: zawsze możliwy jest ruch przeciwny. Jak się zdaje, tylko współrzędne związane ze spadaniem mają jakiś sens fizyczny. W 1922 r. nie miał o tym wszystkim pojęcia ani Paul Painlevé, ani Albert Einstein.

(*) John Wheeler był autorem określenia „czarna dziura”.

Einstein w Paryżu (1922)

Nie była to zwyczajna wizyta naukowa, nie minęły jeszcze cztery lata od zakończenia wojny. Zginęło w niej 1,3 mln Francuzów i w Paryżu nie wszyscy chcieli przyjmować uczonego niemieckiego. Prasa podkreślała wprawdzie, że Einstein nie podpisał podczas wojny Manifestu 93 – szowinistycznego przesłania do reszty Europy, w którym dowodzono, iż Niemcy walczą w imię kultury, Goethego, Beethovena i Kanta. Nie brakowało jednak również głosów takich, jak Roberta Havarda de la Montagne: „Jakakolwiek była postawa Einsteina, jest on Niemcem”. Wizyta miała więc wyraźny podtekst polityczny, miała być pierwszą jaskółką ocieplenia stosunków, Einstein rozmawiał o niej z Harrym Kesslerem, współpracownikiem ministra spraw zagranicznych Walthera Rathenaua, który dążył do ułożenia na nowo stosunków z krajami Ententy. Po drugiej stronie na rzecz ostrożnego zbliżenia działał Paul Painlevé, polityk i matematyk. Einstein przyjeżdżał na zaproszenie Collège de France, inicjatywa należała do profesora owej instytucji i prywatnie jego przyjaciela Paula Langevina. Langevin, uczeń Poincarégo, przekonał się do teorii względności i został jej gorliwym propagatorem. Łączyła go z Einsteinem przyjaźń, jak również socjalistyczne przekonania polityczne.

Prasa wietrzyła sensację, a nawet wypatrywała skandalu. Nagłówki krzyczały: „Einstein w Paryżu”, „Czekając na Einsteina”, „Einstein się ukrywa”, „Einstein nie przybył do Paryża”. Rzeczywiście, uczony postarał się zmylić tropy dziennikarzom, przyjechał niezauważony i zamieszkał w przygotowanym mieszkaniu zamiast w hotelu. W wypowiedzi dla prasy Paul Painlevé stwierdził: „Powinniśmy go przyjąć z szacunkiem jako wielki umysł i z sympatią jako Niemca wiernego swemu krajowi, lecz przy tym szlachetnego i bardzo europejskiego”. Na pytanie o teorie Einsteina Painlevé odpowiedział: „Opierają się one jedynie na potężnych podstawach matematycznych i są raczej wielką próbą ujednolicenia niż konkretnym rezultatem. Ale w nauce początek jest równie ważny jak osiągnięcie równowagi”.

Painlevé osobiście sprawdza bilety wstępu na spotkanie z Einsteinem

Częściowo z przyczyn politycznych Einstein nie brał udziału w spotkaniach otwartych dla publiczności. Wziął udział w czterech sesjach dyskusyjnych w Collège de France, a także wystąpił we Francuskim Towarzystwie Filozoficznym. Wstęp na owe imprezy mieli w zasadzie tylko uczeni oraz studenci, choć pojawiło się także trochę osób z wielkiego świata, jak hrabina Greffulhe, która była prototypem księżny Guermantes w powieści Marcela Prousta, a także hrabina de Noailles, poetka i bliska przyjaciółka pisarza. Sam Proust także bardzo interesował się tą wizytą, mimo że był już bardzo chory i pochłonięty kończeniem swego arcydzieła, były to ostatnie miesiące jego życia. Niewykluczone, że ktoś z kręgu przyjaciół przekazał mu swoje wrażenia na temat Einsteina.

Podwójny portret fotograficzny hrabiny Greffulhe, Otto Wegener, 1899 (Metropolitan Museum of Art)

Siedzą od lewej: Langevin, Einstein, hrabina de Noailles, Painlevé; stoją od lewej: sir Thomas Barclay (prawnik), Leo Strisower (prawnik), Paul Appell (rektor Sorbony), Emil Borel (matematyk) oraz Henri Lichtenberger (germanista),  (Wellcome Collection)

Astronom Charles Nordmann, który wraz z Langevinem organizował tę wizytę, zwrócił uwagę na szeroką czaszkę Einsteina, jego brachycefaliczność. Przypominał on budową czaszki Ernesta Renana. Według rozmaitych rasowych czy może rasistowskich teorii antropologicznych inteligencja miała być skojarzona z długą czaszką, dolichocefaliczną.

Ernest Renan

Uwagi Nordmanna są czysto opisowe, ale zwolennicy rasy aryjskiej już wtedy uciekali się do swoistego fortelu: ponieważ nie można było zanegować żydowskości Einsteina, należało negować jego teorie. Także w przedwojennej Polsce dało się słyszeć głosy różnych mędrków, którzy spod swej gruszy oceniali największe osiągnięcia ludzkości – i wcale ich one nie zachwycały, przeciwnie, byli mocno sceptyczni.

Albert Einstein (1879-1955), physicien américain d’origine allemande, et Paul Langevin (1872-1946), physicien français.
© Neurdein / Roger-Viollet

Dyskusje w Paryżu były kurtuazyjne, lecz pełne zastrzeżeń. Paul Painlevé przedstawił nową postać metryki Schwarzschilda i wyciągał z niej daleko idące wnioski, sądził, że teoria grawitacji Einsteina jest czymś w rodzaju języka matematycznego, który można dostosować do różnych zjawisk. Inny matematyk, Jacques Hadamard, zastanawiał się nad tym, co by się stało, gdyby jakieś ciało niebieskie osiągnęło tak małe rozmiary, że metryka Schwarzschilda staje się rozbieżna (w istocie chodzi tu o pozorną osobliwość, przy promieniu Schwarzschilda tworzy się horyzont zdarzeń, nikt tego wówczas nie wiedział). Wystąpił też Élie Cartan, wielki geometra francuski, który nawiązał później z Einsteinem współpracę. Przy okazji kolejny raz wystąpił ze swą pseudoteorią Edouard Guillaume, Szwajcar, który prześladował Einsteina, usiłując dowieść, iż teoria względności jest wewnętrznie sprzeczna. Filozoficznym oponentem Einsteina był Henri Bergson, niezwykle wtedy popularny wykładowca i pisarz, głoszący własną teorię czasu. Spotykali się później wiele razy i wszyscy oczekiwali starcia dwóch stanowisk. Einstein zwykle uchylał się od polemiki, kiedyś zniecierpliwiony stwierdził na temat teorii Bergsona: „Niech Bóg mu ją wybaczy”.

Wpływ uczonych na politykę był niewielki. Ambasador niemiecki w Paryżu raportował, że wizyta była sukcesem, także z niemieckiego punktu widzenia, ale Einstein postrzegany jest jako nietypowy Niemiec, więc nie należy się spodziewać ocieplenia w uczuciach Francuzów. Tymczasem w Niemczech szło ku gorszemu, kilka miesięcy później prawicowi bojówkarze zamordowali ministra Rathenaua. Nacjonalistyczna prawica nie chciała demokracji, nie chciała normalizacji stosunków z Europą i nie chciała Żydów na eksponowanych stanowiskach. W następnym roku odbył się pucz monachijski, pierwsza, jeszcze nieudana próba dojścia Adolfa Hitlera do władzy.