Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.

Reklamy

Paul Painlevé, Einstein i czarne dziury (1921-1922)

Dzieje rodziny Paula Painlevé’go mogłyby posłużyć jakiemuś nowemu Balzacowi: dawni winogrodnicy, bednarze i kamieniarze, w pokoleniu dziadków zajęli się drukarstwem i litografią, przyszły ojciec uczonego z drukarza-litografa przeobraził się w przedsiębiorcę, producenta farby drukarskiej. Paul uczył się w renomowanych liceach paryskich Saint-Louis i Louis-le-Grand, a studiował matematykę w prestiżowej École normale supérieure, będącej znakomitym wstępem zarówno do kariery naukowej, jak politycznej. (Jej absolwenci zdobyli trzynaście Nagród Nobla, dziesięć Medali Fieldsa i dwie Nagrody Abela). Painlevé uzupełniał wykształcenie matematyczne w Getyndze u Hermanna Schwarza i Feliksa Kleina. W roku 1900, będąc jeszcze przed czterdziestką został członkiem Akademii Nauk, co naszej rodaczce Marii Skłodowskiej-Curie nie udało się nigdy, pomimo dwóch Nagród Nobla. Francuskie elity naukowe były mocno konserwatywne i nie każdy mógł zostać do nich dopuszczony. Painlevé interesował się także lotnictwem: teoretycznie – obliczając siłę nośną oraz praktycznie – odbywając w roku 1908 z Wilburem Wrightem ponadgodzinny lot na wysokości 10 m, przebyli 55 km i szczęśliwie wylądowali, był to ówczesny rekord. Alma Mahler wspomina, że Painlevé należał do entuzjastów symfonii Gustava Mahlera i jeździł specjalnie w różne miejsca, aby ich wysłuchać. Razem z generałem Georges’em Picquartem grywali je podobno na fortepianie w aranżacjach na cztery ręce. Wyciągi fortepianowe dzieł symfonicznych czy oper były dość popularne w czasach, gdy muzyki można było słuchać jedynie na żywo, a fortepiany lub pianina stały w niemal każdym mieszczańskim domu. Z Picquartem łączyły Painlevé’go poglądy w sprawie Dreyfusa, to właśnie Picquart udowodnił, że nie Alfred Dreyfus, lecz Ferdinand Esterhazy był szpiegiem w armii francuskiej. Przez kraj przetoczyła się wcześniej zajadła kampania antysemicka, wysokie dowództwo armii nie chciało przyznać się do błędu i Dreyfus został zrehabilitowany przeszło dziesięć lat po degradacji i uwięzieniu na Diabelskiej Wyspie. W 1910 r. Painlevé został socjalistycznym deputowanym do parlamentu. Od tej pory zajmował się czynnie polityką, bywał ministrem, przewodniczącym Izby Deputowanych, a nawet premierem. W 1921 roku zaczął zabiegać o wizytę Einsteina w Paryżu, niewątpliwie pragnąc w ten sposób zbliżyć oba narody po krwawej wojnie. W następnym roku Einstein rzeczywiście przyjął zaproszenie i przyjechał, o czym pisałem.

Painlevé interesował się nie tylko aspektem politycznym, zajął się bliżej teorią względności, z czego wynikło kilka prac oraz ożywione dyskusje z Einsteinem w Paryżu. Matematyk odkrył nowy sposób opisu pola grawitacyjnego wokół masy punktowej, z czego wyciągnął dość radykalne wnioski, osłabiające w jego mniemaniu, teorię względności. Einstein, nie zgadzając się z tymi wnioskami, nie potrafił wtedy udzielić bardziej konkretnej odpowiedzi. Dyskusje te miały także pewne praktyczne następstwa. Otóż szwedzki okulista, ale i matematyk, Allvar Gullstrand także odkrył ową metrykę Gullstranda-Painlevé’go, jak to się dziś nazywa. I uznał, podobnie, jak Painlevé, że teoria względności nie daje jednoznacznych przewidywań. Oznaczałoby to, że światowa sensacja wokół teorii względności po odkryciu ugięcia światła gwiazd w pobliżu tarczy słonecznej była mocno na wyrost. Gullstrand opiniował prace Einsteina dla Komitetu Noblowskiego i w roku 1921 nagrody nie przyznano. Einstein był najpoważniejszym kandydatem, ale Gullstrand podważał wartość jego prac. W końcu Nagrodę przyznano Einsteinowi dopiero w roku 1922 (za poprzedni rok), a więc po długim bardzo namyśle. W dodatku uznano, że bezpieczniej będzie zostawić na boku kwestię teorii względności, toteż przyznano Nagrodę za wyjaśnienie zjawiska fotoelektrycznego – w tym przypadku nie było wątpliwości, że przewidywania Einsteina zostały wyraźnie potwierdzone eksperymentalnie. Painlevé wyrażał swą krytykę o tyle bardziej dyplomatycznie, że uznawał zarazem wartość poznawczą podejścia Einsteina i zestawiał go z Lagrange’em. Obaj jednak, zarówno Francuz, jak Szwed, mieli spore zastrzeżenia.

Opiszę, na czym polegały zastrzeżenia Painlevé’go i co odpowiadał mu Einstein (na ile to dziś wiadomo). W drugiej części opiszę metrykę Gullstranda-Painlevé’go i jej konsekwencje: czarną dziurę. Uczeni pomiędzy rokiem 1915 a latami pięćdziesiątymi XX stulecia wiele razy natykali się na zagadnienie czarnych dziur i na rozmaite sposoby cofali się przed ich uznaniem, błędnie interpretując swoje równania. Pokazuje to, że interpretacja formalizmu matematycznego była tu niesłychanie trudnym problemem, znacznie poważniejszym niż formalne przekształcenia, które w różnych wersjach wykonywało wielu uczonych.

Ogólna teoria względności ma tę własność, że możemy używać w zasadzie niemal dowolnych czterech współrzędnych dla opisania miejsca i czasu. Same współrzędne nie muszą nic oznaczać z fizycznego punktu widzenia, tę samą sytuację można więc opisywać na różne sposoby. Często nie widać, że owe różne opisy dotyczą w istocie tej samej sytuacji. Tak było w przypadku metryki Gullstranda-Painlevé’go.

Czasoprzestrzeń wokół punktowej masy m w teorii Einsteina opisana jest metryką Schwarzschilda:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2-\dfrac{dr^2}{1-\dfrac{r_S}{r}}-r^2 d\varphi^2.

Stała r_S jest promieniem Schwarzschilda (dziś: promieniem horyzontu czarnej dziury). Painlevé i niezależnie od niego Gullstrand odkryli, że można tę samą sytuację opisać także za pomocą innej metryki:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2+2\sqrt{\dfrac{r_S}{r}}dr dt-dr^2-r^2 d\varphi^2.

W obu przypadkach zapisałem metrykę tylko w płaszczyźnie równikowej, żeby mniej pisać (mamy wtedy jedynie zmienne t, r,\varphi). Painlevé podał także inne możliwe postaci owej metryki, sugerując, że dowodzi to, iż teoria Einsteina jest w istocie pusta, można bowiem wyciągnąć z niej rozmaite wnioski dla tej samej sytuacji fizycznej. Np. w pierwszej metryce przestrzeń trójwymiarowa nie jest euklidesowa, a w drugiej jest. Ergo wnioski Einsteina dotyczące światła w polu grawitacyjnym Słońca oraz ruchu Merkurego są nieuzasadnione. Podobnie rozumował Gullstrand, słuchany uważnie przez Komitet Noblowski.

Painlevé uznał, że wyciąganie z postaci metryki wniosków fizycznych to „czysta fikcja”. Zakomunikował to na posiedzeniu paryskiej Akademii Nauk i uprzejmie doniósł o tym listownie Einsteinowi. Na co Einstein, członek berlińskiej Akademii Nauk, równie uprzejmie oznajmił, że „metryczna interpretacja ds^2 nie jest żadną «pure imagination», lecz samym sednem teorii (der innerste Kern)” [Einstein Papers, t. 12, s. 369]. Podkreślał też, że same współrzędne nie znaczą nic, trzeba z nich dopiero wyciągnąć wnioski fizyczne nt. czasu i odległości.

Pewne zbliżenie stanowisk nastąpiło podczas dyskusji w Paryżu, choć Painlevé pisał już mniej bojowo, wkrótce zresztą wrócił do polityki. Paul Langevin podsumował to, mówiąc, że byłoby lepiej, gdyby Painlevé przeczytał o teorii względności, zanim wystąpił ze swą krytyką, a nie dopiero później. Tak to w akademiach bywa: ludzie dostają się do nich dzięki dawnym osiągnięciom, a nie stanowi to żadnej gwarancji, że dobrze rozumieją nowości naukowe. W dodatku akademie (przynajmniej wtedy) drukowały wszystko, co ich członkowie uznali za ciekawe. Dyskusja w paryskiej Akademii Nauk na temat teorii względności w latach 1921-1922 nie stała na zbyt wysokim poziomie. Akademicy byli na ogół niechętni Einsteinowi. Na propozycję, aby go przyjąć na członka-korespondenta, jeden z szacownych uczonych zareagował stwierdzeniem, że trudno wyróżniać w ten sposób człowieka, który „zniszczył mechanikę”.

Podczas wizyty Einsteina matematyk Jacques Hadamard zapytał o kwestię osobliwości metryki Schwarzschilda dla r=r_S. Niemiecki uczony przekonywał, a nawet poparł pewnymi rachunkami, które przeprowadził z dnia na dzień, że taka „katastrofa Hadamarda” nie może się zdarzyć w rzeczywistości, ponieważ zanim skoncentruje się materię pod promieniem Schwarzschilda, to wcześniej ciśnienie wewnątrz takiej gwiazdy stanie się nieskończone. Nie miał w tej kwestii racji, ale także później starał się dowodzić, że czarne dziury są niemożliwe. Einstein martwił się o spójność własnej teorii, ale wyrażał też dość powszechne stanowisko, Arthur Eddington, największy specjalista od budowy wnętrza gwiazd, twierdził, że z pewnością musi istnieć prawo fizyczne zabraniające takiego upakowania materii.

Jak można spojrzeć na tę dyskusję z perspektywy czasu, mając po swej stronie „łaskę późnego urodzenia”? Na wątpliwości Hadamarda (jak najbardziej uzasadnione) odpowiada metryka Painlevé’ego. Wystarczy spojrzeć, że nic się tam nie dzieje przy r=r_S (także jej wyznacznik jest różny od zera). Zatem w innych współrzędnych osobliwości tu nie ma i Einstein nie musiał się męczyć żadnymi rachunkami. Katastrofa Hadamarda jest osobliwością konkretnych współrzędnych Schwarzschilda, to coś w rodzaju „osobliwości” współrzędnych geograficznych na biegunie ziemskim, gdzie zbiegają się wszystkie południki. Wiemy jednak, że nic się tam złego nie dzieje z Ziemią.

W dodatku metryka Painlevé’go ze znakiem minus przed pierwiastkiem też stanowi rozwiązanie równań Einsteina. Nietrudno zobaczyć, co wtedy otrzymamy dla światła, tzn. gdy ds^2=0. Załóżmy dodatkowo, że promień świetlny biegnie radialnie, tzn. d\varphi=0. Dostajemy

0=\left(1-\dfrac{r_S}{r}\right)dt^2 -2\sqrt{\dfrac{r_S}{r}} dr dt-dr^2.

Dzieląc obie strony przez dt^2, dostajemy równanie kwadratowe dla prędkości radialnej. Jego rozwiązania dane są wyrażeniem:

\dfrac{dr}{dt}=\pm 1 -\sqrt{\dfrac{r_s}{r}}.

Równanie to opisuje dwa skrajne promienie świetlne: spadający na centrum i oddalający się od centrum. Gdy r>r_S jeden z nich zbliża się do centrum, drugi oddala. Kiedy jednak przekroczymy punkt „katastrofy Hadamarda” i r<r_S oba promienie zbliżają się ku centrum. Znaczy to, że nawet promień świetlny nie może się wydostać poza obszar r<r_S, czyli spod horyzontu czarnej dziury.

Przejście do współrzędnych Painlevé’go nie zmienia współrzędnej r, lecz jedynie czas. Jest on teraz mierzony jako czas własny cząstek spadających z nieskończoności na centrum. Są to współrzędne padającego deszczu, jak nazywają to Edwin F. Taylor i John Archibald Wheeler (*) w swej książce Exploring Black Holes.

 

 

(Na rysunku odległości i czasy wyskalowane są w promieniach Schwarzschilda)

Gdy cząstka mija horyzont, jej stożek przyszłości zaczyna być zwrócony ku wnętrzu, a to znaczy, że niebawem spadnie na centralną osobliwość. Drugi znak we współrzędnych Painlevé’go odpowiadałby wznoszeniu się z centrum do nieskończoności. Prawa grawitacji nie mówią nic na temat kierunku czasu: zawsze możliwy jest ruch przeciwny. Jak się zdaje, tylko współrzędne związane ze spadaniem mają jakiś sens fizyczny. W 1922 r. nie miał o tym wszystkim pojęcia ani Paul Painlevé, ani Albert Einstein.

(*) John Wheeler był autorem określenia „czarna dziura”.

Emmy Noether i jej twierdzenie, część I (1918)

W fizyce XX wieku ogromną rolę odegrały zasady zachowania oraz symetrie. Zasady zachowania energii, pędu, momentu pędu itd. uważa się dziś za podstawowe prawa przyrody. Zarówno na gruncie fizyki klasycznej, jak i kwantowej, zasady zachowania związane są z symetriami układów fizycznych. Np. niezmienność w czasie praw fizycznych wiąże się z zasadą zachowania energii, symetria translacyjna wiąże się z zasadą zachowania pędu itp. Związek między symetriami a zasadami zachowania określa jedno z twierdzeń udowodnionych przez Emmy Noether. Najpierw powiemy trochę o postaci Emmy Noether, której ranga naukowa daleko wykracza poza twierdzenia znane każdemu fizykowi. W drugiej części przedstawimy szczególny przypadek twierdzenia Noether, obowiązujący w mechanice punktów materialnych. Pamiętać jednak trzeba, że twierdzenie Noether stało się ważną częścią współczesnej fizyki w ogóle, a nie wyłącznie mechaniki.

W roku 1935, gdy Emmy Noether niespodziewanie zmarła w Stanach Zjednoczonych wskutek powikłań pooperacyjnych, wspomnienie pośmiertne o jej osiągnięciach znalazło się w liście Alberta Einsteina do „New York Timesa”. Najwybitniejszy z naukowych uchodźców niemieckich uhonorował w ten sposób pierwszą tej rangi matematyczkę w historii. Mimo że w latach 1915-1933 pracowała ona w Getyndze, najlepszym wówczas ośrodku matematycznym świata, była znana wśród kolegów, miała uczniów, doktorantów itd., nie udało się jej nigdy uzyskać pełnej profesury, i to pomimo wsparcia Feliksa Kleina oraz Davida Hilberta. Opór przed powołaniem kobiety na katedrę był zbyt silny. W tym czasie w Niemczech profesurę z fizyki eksperymentalnej przyznano tylko jednej kobiecie: Lise Meitner w Berlinie, który uchodził za bardziej postępowy. Pierwszą katedrę matematyki objęła w Niemczech w 1957 r., a więc w zupełnie innych czasach, Ruth Moufang. Noether pracowała przez większą część życia za darmo albo otrzymując niewielkie pieniądze za prowadzenie zajęć na uczelni. Żyła skromnie, nie była zamożna, ale i nie biedna, jej ojciec Max był profesorem matematyki w Erlangen. Emmy miała także braci utalentowanych w kierunkach ścisłych, choć ostatecznie okazało się, że to ona była najwybitniejszym uczonym w rodzinie. Emmy nie uczyła się nigdy w szkole średniej, maturę zdała eksternistycznie. Także na uniwersytecie, w Erlangen i w Getyndze, miała jedynie prawo słuchania wykładów, bez możliwości formalnego ukończenia studiów. Co ciekawe, jej talent matematyczny rozwinął się dość późno. Swój przyzwoity i bardzo pracochłonny doktorat uważała później za nieistotny (obliczyła w nim postać 331 kowariantnych form czwartego stopnia trzech zmiennych). Było to rozszerzenie pracy opiekuna jej doktoratu Paula Gordana. Ówczesna algebra sprawiała na postronnych widzach wrażenie dziedziny zupełnie oderwanej od zastosowań, choć prawie nigdy nie da się tego uczciwie stwierdzić o żadnym dziale matematyki. Prace Gordana i jeszcze starszego Alfreda Clebscha zawierają np. znane w fizyce kwantowej współczynniki Clebscha-Gordana. Współczynniki te są więc kilkadziesiąt lat starsze niż sama mechanika kwantowa.

Fotografia ok. 1915 r. (http://physikerinnen.de)

Już po trzydziestce trafiła do Getyngi z inicjatywy Kleina i Hilberta. Zajęła się tam kwestią symetrii oraz zasad zachowania. Udowodniła dwa słynne dziś twierdzenia na ten temat. Wówczas nie były one tak znane, choć ich udowodnienie miało spore znaczenie dla ogólnej teorii względności. Hilbert zajmował się tą teorią równolegle do Einsteina, wyraźnie z się z nim ścigając. Był to skutek wykładów Einsteina w Getyndze w połowie roku 1915. David Hilbert zapalił się do tego podejścia, jednak jego cel był inny niż Einsteina: pragnął bowiem zaproponować teorię wszystkiego, obejmującą także materię. Ten ambitny zamysł był zdecydowanie przedwczesny, lecz jesienią roku 1915 Hilbert deptał Einsteinowi po piętach. Stanowiło to przykład szeroko wtedy znanego zwyczaju matematyków z Getyngi, że bez większych skrupułów wchodzili w tematykę prac innych kolegów. Nazywano to złośliwie „nostryfikacją”. Einstein o mały włos nie padł ofiarą takiej nostryfikacji. Wielu historyków sądziło zresztą, że to Hilbert pierwszy napisał równania pola ogólnej teorii względności. Tak jednak nie było i sam Hilbert nigdy nie zgłaszał w tej kwestii żadnych roszczeń. Dziś wiemy zresztą, że nie miałby do tego podstaw. Równania pola ogólnej teorii względności sformułował Einstein w listopadzie 1915 roku. Stosunki obu uczonych, przez chwilę dość napięte, wróciły potem do poprzedniego przyjaznego tonu. Hilbert, a później i Klein, interesowali się dość żywo teorią Einsteina, szczególnie kwestią zasady zachowania energii-pędu. Z pracy Noether wynikało, że tensor Einsteina G oraz tensor energii-pędu T muszą spełniać związek {G^{\mu\nu}}_{;\nu}=0={T^{\mu\nu}}_{;\nu}. Dopiero później zauważono, iż włoski geometra Luigi Bianchi już w 1902 ogłosił tożsamości nazwane dziś jego imieniem (nb. tożsamości te znał już Gregorio Ricci dwie dekady wcześniej), z których fakt powyższy wynika. Pokazuje to spory zamęt, jaki istniał nie tylko w samej nowej fizyce, ale także i w stosowanej do niej nienowej matematyce, która jednak nie była znana nawet największym ówczesnym matematykom (wyjątkiem był tu Tullio Levi-Civita).

Największe osiągnięcia Emmy Noether przypadają na lata dwudzieste. Stała się ona ważną postacią w rozwoju nowoczesnej algebry abstrakcyjnej, w której bada się struktury określone za pomocą aksjomatów, niezależnie od konkretnej reprezentacji. Prace te prowadzone były w duchu Hilberta, który od dawna zabiegał o ścisłą aksjomatyzację zarówno matematyki, jak i fizyki. W fizyce podejście tego rodzaju niezbyt się przyjęło, w matematyce szukanie ogólniejszych struktur jest często skuteczną metodą atakowania szczegółowych problemów, tak np. udowodniono wielkie twierdzenie Fermata. Emmy Noether prowadziła w Getyndze słynne z czasem wykłady. Początkowo miały one formę stałego zastępstwa za Davida Hilberta. Chodziło o ominięcie formalnej trudności: Noether nie miała prawa nauczania. Wykłady te przyciągały niezbyt liczne, lecz ważne grono młodych badaczy. W formie przypominały raczej głośne myślenie na temat matematyki niż uporządkowane rozdziały podręcznika. Jednak drugi tom znanej wówczas monografii Moderne Algebra Bartela van der Waerdena w znacznym stopniu był opracowaniem idei z wykładów Noether w Getyndze. W wieku pięćdziesięciu lat osiągnęła niemal wszystko, czego może sobie życzyć uczony: miała liczne publikacje, wielu uczniów, którzy rozwijali jej idee (chętnie się nimi dzieliła i nie zgłaszała roszczeń do pierwszeństwa, nawet gdy się jej ono należało), dwa razy zaproszona była do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała „Mathematische Annalen”. Nie była tylko wciąż profesorem, choć jej młodszy i nie tak wybitny brat, Fritz, uzyskał katedrę na Politechnice Wrocławskiej (wówczas Technische Hochschule) już w 1922 roku.

Na dworcu w Getyndze jesienią 1933 r. (http://physikerinnen.de)

Aż nadeszła katastrofa roku 1933. Oczywiście, większość Niemców uznawała ją w tamtej chwili za zwycięstwo albo przynajmniej za krok w dobrym kierunku. Społeczeństwo, karmione od dziesiątków lat rasistowskimi bredniami o wyższości Niemców nad Żydami, nie protestowało, gdy władze polityczne wyciągnęły wnioski z tych nauk i na początek wyrzuciły wszystkich Żydów ze stanowisk państwowych, w tym z uniwersytetów. Emmy Noether nie interesowała się polityką. Nie reagowała nawet, gdy któryś z jej studentów przyszedł na wykład w brunatnej koszuli. Teraz jednak straciła swą i tak mało znaczącą posadę i nie mogła uczyć. Jak wielu rozsądnych ludzi, miała nadzieję, że to szaleństwo skończy się jak zły sen. Znalazła pracę w Stanach Zjednoczonych, w roku 1934 odwiedziła Niemcy jako uczona z zagranicy. Żona jej współpracownika, profesora z Hamburga, Emila Artina wspominała:

Rzeczą, która najbardziej zapadła mi w pamięci, była jazda metrem w Hamburgu. Zabraliśmy Emmy spod Instytutu i natychmiast oboje z Artinem zaczęli rozmawiać o matematyce. Chodziło wtedy o teorię ideałów (Idealtheorie) i mówili o pojęciach takich, jak Ideal, Führer, Gruppe i Untergruppe, po chwili cały wagon zaczął nadstawiać uszu. Byłam śmiertelnie przerażona, myślałam, Boże, za chwilę ktoś nas aresztuje. Był to już rok 1934, a Emmy, nie zwracając na nic uwagi, mówiła bardzo głośno i w podnieceniu coraz głośniej i głośniej, i co chwila pojawiały się słowa Führer oraz Ideal. Była pełna temperamentu i zawsze mówiła bardzo szybko i bardzo głośno.

Terminologia matematyczna nałożyła się tu na partyjną nowomowę, której Emmy zapewne nie znała albo nie zwracała na nią uwagi jako na bełkot. Żona Artina była Żydówką i miała wszelkie powody, by się bać. Rok rządów nazistów pogłębił różnice miedzy wolnym światem a narodowo-socjalistycznym obłędem, przy czym rewolucja dopiero się rozkręcała. Trzy lata później także Artin musiał wyjechać, bo już nawet żona Żydówka nie mogła być tolerowana w czystym rasowo państwie. Emmy zlikwidowała tamtego lata swoje mieszkanie w Getyndze i zrozumiała, że nie wróci szybko do Niemiec. Najbardziej gorzkim aspektem rasistowskiego obłędu było to, że ludzie tacy jak Noether czuli się zawsze Niemcami, nie byli w żaden sposób ludnością napływową, od wieków mieszkali w Niemczech, od XIX wieku tworzyli w coraz większym stopniu ich naukę i kulturę. Żeby nie kończyć myślami o zniszczeniu i nienawiści, przytoczmy słowa Einsteina ze wspomnianego listu do NYT:

Istnieje, na szczęście, mniejszość złożona z tych, którzy wcześnie zdali sobie sprawę, że najpiękniejsze i przynoszące najwięcej satysfakcji przeżycia dostępne człowiekowi nie pochodzą ze świata zewnętrznego, lecz z rozwoju indywidualnych uczuć, myśli i działań. Prawdziwi artyści, badacze i myśliciele zawsze byli osobami tego rodzaju. I choćby życie takich jednostek upłynęło całkiem niepozornie, to jednak owoce ich wysiłków są najcenniejszym dziedzictwem każdego pokolenia dla swych następców.

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

Einstein nie pisał takich tekstów bez zastanowienia. Zawsze przemawiał do niego ideał życia odosobnionego, niemal klasztornego, i poświęconego spokojnemu namysłowi nad światem. Niezbyt lubił błyszczeć, a przynajmniej szybko go to nudziło. Wielki rozgłos, jaki go otaczał, przyjmował raczej z rozbawieniem, jako coś w istocie niepoważnego i nieco wstydliwego. Przyjaźnił się zresztą nie tylko z wybitnymi uczonymi, ale także z różnego rodzaju dziwakami i oryginałami, cenił osobowość, nie lubił ludzi nijakich. O skali osiągnięć Emmy Noether wiedział zapewne od Hermanna Weyla, który mógł to kompetentnie ocenić. Jego podziw dla matematyki narastał z czasem; w latach trzydziestych w jego pracy nie odgrywało już żadnej roli eksperyment, musiał więc kierować się względami formalnymi, czysto matematycznymi. I rzeczywiście, każdy niemal rodzaj matematyki, prędzej czy później znajduje zastosowanie w naukach o przyrodzie czy świecie społecznym.