Richarda Feynmana droga do równania Schrödingera (1941)

Jeszcze w trakcie swoich studiów pierwszego stopnia w MIT (ukończył je w 1939 r.) Feynman dowiedział się o trudnościach elektrodynamiki kwantowej. Teoria taka była niezbędna do opisania oddziaływań przy większych energiach: kiedy mogą tworzyć się albo anihilować pary elektron-pozyton. Obliczenia prowadziły jednak do całek rozbieżnych, teoria wymagała nowego podejścia.

W swoim wykładzie noblowskim Richard Feynman opowiada o kilku ideach, które starał się rozwijać w trakcie swoich dalszych studiów w Princeton (na egzaminach wstępnych z fizyki uzyskał tam komplet punktów, co zdarzyło się po raz pierwszy). W roku 1942 r uzyskał doktorat pod kierunkiem Johna Archibalda Wheelera i niebawem zaczął pracę w Projekcie Manhattan.

Jednym z pomysłów Feynmana było nowe sformułowanie mechaniki kwantowej. Poszukiwał podejścia, w którym można by opisać, co dzieje się z cząstkami w czasoprzestrzeni. Chodziło mu o teorię relatywistyczną, w której opis taki wydaje się naturalny. Należało się spodziewać, że zamiast hamiltonianu pojawi się tu lagranżian cząstek (sformułowanie Lagrange’a mechaniki daje się łatwo zapisać w postaci jawnie kowariantnej, w której zgodność z teorią względności jest punktem wyjścia, a nie dodatkowym założeniem). Na początek udało mu się sformułować w nowy sposób „starą” mechanikę kwantową, która liczyła wprawdzie dopiero piętnaście lat, lecz dla młodego człowieka była to już prehistoria. Właśnie to sformułowanie znalazło się w doktoracie.

Punktem wyjścia była rozmowa z Herbertem Jehle w „Nassau Inn” w Princeton któregoś wieczoru. Jehle, Niemiec, syn generała, był kwakrem i pacyfistą, wyemigrował z nazistowskiej ojczyzny, pracował w Brukseli, w końcu trafił do obozu internowania w Gurs w Pirenejach w republice Vichy, skąd trafił do Stanów Zjednoczonych. Jehle znał pewną pracę Paula Diraca, w której pojawiał się lagranżian. Nazajutrz wybrali się obaj do biblioteki, aby odszukać tę pracę z 1933 roku. Była ona opublikowana w dość nieprawdopodobnym miejscu, bo w rosyjskim czasopiśmie „Physikalische Zeitschrift der Sowjetunion”.

Dirac pisze, jak znaleźć funkcję falową w chwili późniejszej t+\varepsilon z funkcji falowej w chwili t, korzystając z zasady Huygensa:

\psi(x,t+\varepsilon)={\displaystyle \int G(x,y)\psi(y,t)dy}.

Funkcja G(x,y) jest dziś zwana propagatorem cząstki. Funkcja falowa w późniejszym czasie jest więc sumą funkcji falowych w czasie wcześniejszym wziętą z odpowiednimi wagami – wagi te opisuje propagator. Angielski uczony stwierdził też, że propagator dla krótkich czasów „odpowiada” (corresponds to) wyrażeniu

e^{iL \varepsilon /\hbar},

gdzie L jest lagranżianem, \hbar – stałą Plancka. W wykładniku mamy tu działanie dla bardzo krótkiego czasu \varepsilon. Feynman spróbował natychmiast ustalić, co oznacza owa odpowiedniość. Jeśli wziąć dwa punkty x i y, to średnia prędkość cząstki powinna się równać

v=\frac{x-y}{\varepsilon},

a energia potencjalna powinna być także jakąś wartością średnią:

V=V(\frac{x+y}{2}).

Lagranżian to różnica energii kinetycznej i potencjalnej, a więc wyrażenie wykładnicze Diraca jest równe:

\exp\left(\frac{im(x-y)^2}{2\hbar\varepsilon}-\frac{i}{\hbar}V(\frac{x+y}{2})\varepsilon\right).

Dla niewielkich \varepsilon pierwszy składnik wykładnika będzie gwałtownie oscylował, drugi natomiast staje się coraz mniejszy i może być zastąpiony przybliżeniem liniowym. Oznaczając x-y=\xi i przyjmując, że „odpowiada” u Diraca znaczy „jest proporcjonalny”, mielibyśmy

\psi(x,t+\varepsilon) =A(\varepsilon) {\displaystyle \int \exp\left(\dfrac{im\xi^2}{2\varepsilon\hbar}\right)\left\{ 1-\dfrac{i\varepsilon}{\hbar}V(x-{\xi}/{2})\right\}\psi(x-\xi)d\xi}.

Ponieważ pierwszy czynnik pod całką gwałtownie oscyluje, więc możemy funkcję falową pod całką przybliżyć jej rozwinięciem Taylora wokół x:

\psi(x-\xi)\approx \psi(x)-\xi \dfrac{\partial \psi}{\partial x}+\dfrac{\xi^2}{2}\dfrac{\partial^2\psi}{\partial x^2}.

Także energię potencjalną możemy zamienić jej wartością w punkcie x. Całki po prawej stronie dają się w tym przybliżeniu bez trudu obliczyć i otrzymujemy:

\psi(x,t+\varepsilon)=\psi(x,t)-\dfrac{i\varepsilon }{\hbar}V(x)\psi(x,t)+\dfrac{i\hbar \varepsilon}{2m}\,\dfrac{\partial^2\psi}{\partial x^2}.

Możemy to równanie przekształcić do postaci

i\hbar \dfrac{\psi(x,t+\varepsilon)-\psi(x,t)}{\varepsilon}=-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2}+V(x)\psi(x,t),

co w granicy \varepsilon\rightarrow 0 przechodzi w równanie Schrödingera.

Jak opowiada Feynman, obliczenie to wykonał od razu w obecności Jehlego, który pilnie notował kolejne kroki.
Był to punkt wyjścia do całek Feynmana po trajektoriach (albo po historiach cząstki – jak nazwał to John Wheeler). Wyobraźmy sobie bowiem, że dany przedział czasu (0,T) dzielimy na N+1 podprzedziałów o długości \varepsilon każdy.

Propagator cząstki przyjmuje postać:

G(x,y)=A^{N+1}{\displaystyle \int\ldots\int \exp(\frac{i\varepsilon}{\hbar}(L(y,x_1)+L(x_1,x_2)+\ldots+L(x_N,x))dx_1\ldots dx_N}\mbox{(*)}.

Jeśli wyobrazimy sobie, że N\rightarrow\infty, to wykładnik w funkcji wykładniczej będzie dążył do całki działania pomnożonej przez czynnik i/\hbar:

\dfrac{i}{\hbar}S={\displaystyle \frac{i}{\hbar}\int_0^T L\left(x,\frac{dx}{dt}\right)dt}.

Mamy więc procedurę obliczania wartości G(x,y) za pomocą sumy po różnych możliwych trajektoriach. G można zinterpretować fizycznie: kwadrat modułu tej zespolonej wartości jest prawdopodobieństwem, że cząstka z punktu czasoprzestrzeni (y,0) przemieści się do punktu (x,T). Po drodze „próbuje” ona niejako wszelkich możliwych trajektorii i każda z nich daje wkład proporcjonalny do wartości działania:

G(x,T|y,0) \sim {\displaystyle \sum_{trajektorie}e^{iS[trajektoria]/\hbar}}.

Zapisujemy to następująco:

G(x,T|y,0)= {\displaystyle \int e^{iS[x(t)]/\hbar}{\mathcal D}[x(t)]}.

Całka Feynmana jest w istocie granicą wyrażeń (*) i w celu obliczenia jej wartości musimy wracać do tej definicji. Okazuje się jednak, że sformułowanie to pozwala nie tylko spojrzeć inaczej na znaną fizykę, ale także umożliwia konkretne numeryczne obliczenia metodą Monte Carlo. Pozwala też łatwo zrozumieć, czemu przechodząc od fizyki kwantowej do klasycznej, otrzymujemy zasadę najmniejszego działania.

Wartości potrzebnych całek wynikają ze znanego wzoru:

{\displaystyle \int_{-\infty}^{\infty}e^{-\alpha x^2}dx=\sqrt{\dfrac{\pi}{\alpha}} }.

Jest on słuszny także dla czysto urojonych wartości \alpha. Różniczkowanie tego wzoru po \alpha generuje nam także całkę \int x^2 e^{-\alpha x^2} dx. Stała A równa jest

A=\sqrt{\dfrac{m}{2\pi i\hbar \varepsilon}}.

Kiedyś napiszę może trochę więcej na temat obliczania całek przez Feynmana, nieprzypadkowo zajmował się on w Los Alamos nadzorowaniem praktycznych obliczeń numerycznych – jak mało kto potrafił bowiem szybko obliczyć niemal wszystko, co daje się obliczyć metodami klasycznej analizy.