James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Reklamy

Od nacjonalizmu do idiotyzmu: duch francuski i fizyka niemiecka (1915, 1936)

Ponieważ przybliża się chwila, gdy nasze niestrudzone władze powołają wreszcie do życia Narodowy Instytut Fizyki im. Antoniego od Wielu Wybuchów, więc warto może przypomnieć chlubne przykłady z przeszłości. Złudne jest bowiem mniemanie, że dziedziny takie, jak matematyka albo fizyka nie mają charakteru narodowego. Otóż mają i dlatego tak ważne jest promowanie autentycznie polskiej fizyki. A jakaż to będzie radość dla dziatek naszych najmilszych, gdy w programie szkół po Koperniku będzie od razu Maria Skłodowska-Curie, wypadną zaś te wszystkie Newtony, Ohmy, Hertze i Einsteiny. Wszak żarówkę wynalazł Łodygin, nie jakiś Edison. A była przecież i lampa naftowa Łukasiewicza, i elektryczne świece Jabłoczkowa. My, Słowianie (czyli w zasadzie Polacy), daliśmy światu tyle, tylko on o tym nic nie wie. Kto zaś będzie negował nasze osiągnięcia, ten skazany być może na 3 lata naszej szkoły i nawet wśród pingwinów dopadnie go karząca ręka prawa i sprawiedliwości.

Pierwszy przykład pięknej myśli narodowej w naukach ścisłych znajdujemy u Pierre’a Duhema. Wybitny specjalista od termodynamiki, najbardziej znany jest jako filozof i historyk nauki. Wprowadził on rozróżnienie umysłów naukowych na typ angielski i francuski. Miało się ono wywodzić z tego, co Blaise Pascal określał jako zmysł życiowy (esprit de finesse) oraz zmysł geometryczny (esprit de géométrie). W nauce mielibyśmy uczonych, którzy tworzą różne modele, trzymając się danych doświadczalnych, nawet gdy wprowadza to pewien zamęt pojęciowy; drudzy to budowniczowie prostych teorii, koncentrujący się na ich konsekwencjach. Przykładem typu angielskiego miał być Michael Faraday, francuskiego – Isaac Newton. Rozróżnienie nie miało więc charakteru nacjonalnego, lecz analityczny. Duhem nie lubił brytyjskiej szkoły posługującej się pojęciem pola elektromagnetycznego i mocno atakował Jamesa Clerka Maxwella z pozycji filozoficznych. Oczywiście, żadna filozofia nie mogła na dłuższą metę zaszkodzić osiągnięciom Maxwella, filozofowie mówią swoje, a nauka idzie dalej, nawet bez ich pozwolenia.

Gdy wybuchła pierwsza wojna światowa, czyli wielka wojna (nikt jeszcze nie wiedział, że będzie następna), Duhem, za stary, aby iść na front, zaczął pisać i nauczać o niemieckiej nauce. Co pochlebnego można było powiedzieć o nauce wrogów? Duhem nie zamierzał ich chwalić, wprowadził i omówił pojęcie umysłu typu niemieckiego. Nauka niemiecka była formalistyczna, polegająca na wywodach logicznych nawet tam, gdzie to nie ma większego sensu. „Niemiec jest pracowity, skrupulatny, zdyscyplinowany i podporządkowany”. To geometra, brak mu subtelności. Przykładem Bernhard Riemann, twórca abstrakcyjnego ujęcia geometrii nieeuklidesowej. „Doktryna Riemanna jest ścisłą algebrą, gdyż wszystkie twierdzenia, jakie się w niej formułuje, są bardzo precyzyjnie wydedukowane z przyjętych postulatów; zaspokaja to zmysł geometryczny. Nie jest jednak prawdziwą geometrią, gdyż, wprowadzając swoje postulaty, wcale nie zatroszczyła się, aby wnioski z nich zgadzały się w każdym punkcie z osądami wyprowadzonymi z doświadczenia, które składają się na nasze intuicje dotyczące przestrzeni; w ten sposób przeczy ona zdrowemu rozsądkowi”. Był luty roku 1915, w listopadzie Albert Einstein zapisał równania pola grawitacyjnego w swej teorii. Od kilku lat ci, którzy śledzili rozwój fizyki, wiedzieli, że właśnie geometria riemannowska jest językiem matematycznym nowej teorii. Inaczej mówiąc: owa formalistyczna geometria, rzekomo ignorująca nasze pojęcie przestrzeni, okazała się nauką o fizycznej czasoprzestrzeni, jak najbardziej konkretną, podlegającą pomiarom. Duhem nie śledził zapewne grawitacyjnych prac Einsteina, ponieważ już wcześniejsza szczególna teoria względności nie zyskała w jego oczach aprobaty. Sądził, iż nie istnieje graniczna prędkość w przyrodzie, gdyż można sobie zawsze wyobrazić przebycie określonej drogi w dowolnie krótkim czasie, nawet gdy praktycznie nie potrafimy tego zrealizować. Przyjęcie zasady względności Einsteina, Minkowskiego i Lauego sprawia, że prędkość ponadświetlna staje się sprzecznością logiczną – twierdzi Duhem. „To, iż zasada względności dezorganizuje wszelkie intuicje wynikające ze zdrowego rozsądku, nie wywołuje u fizyków niemieckich żadnych wątpliwości. Przyjęcie jej oznacza siłą rzeczy obalenie wszystkich doktryn dotyczących przestrzeni, czasu, ruchu, wszystkich teorii mechaniki i fizyki; w tak wielkiej dewastacji nie ma niczego, co by nie mogło się podobać myśli germańskiej. Na terenie, który zostanie oczyszczony z dawnych poglądów, geometryczny zmysł Niemców pozwoli im całym sercem oddać się dziełu zbudowania na nowo całej fizyki, której fundamentem stanie się zasada względności”. Widzimy więc na tych przykładach, jak bardzo niefrancuska, a tym samym przykra dla zrównoważonego umysłu, była niemiecka nauka Einsteina.

Mamy drugi jeszcze przykład, jak wolna myśl narodowa kształtować może zdrową etnicznie fizykę. Autorem naszym jest Philipp Lenard, laureat Nagrody Nobla z fizyki eksperymentalnej, człowiek mimo to zgorzkniały i upatrujący odrodzenia nauki aryjskiej w wyzwoleniu się od wpływów żydowskich. Zdaniem Lenarda fizyka stworzona została niemal wyłącznie przez Aryjczyków: Francuzów w jego opowieści nie było, Anglicy, Szkoci i Skandynawowie to praktycznie Niemcy. Niemcami byli też wielcy eksperymentatorzy, jak Heinrich Hertz, odkrywca fal elektromagnetycznych, u którego Lenard pracował kiedyś jako asystent. Hertz nie był jednak „czystej krwi”: jego ojciec, prawnik i senator hanzeatyckiego miasta Hamburga, był Żydem przechrzczonym na luteranizm. Miało to złowieszcze, zdaniem Lenarda, następstwa, gdyż w ostatnich latach życia Hertz zajmował się zasadami mechaniki. W pracy tej „silnie wyszedł na jaw duch żydowski, który w jego wcześniejszych owocnych pracach pozostawał w ukryciu”. W 1936 roku ukazało się czterotomowe dzieło Philippa Lenarda, zatytułowane Deutsche Physik. Był to podręcznik zawierający zdrową pod względem narodowym część fizyki, a nie – jakby ktoś złośliwy mógł pomyśleć – to, co z fizyki zrozumiał Lenard. We wstępie do swego wiekopomnego dzieła skromny jego autor zwracał się do czytelnika: „«Fizyka niemiecka?» – zapytacie. Mógłbym równie dobrze powiedzieć fizyka aryjska albo fizyka ludzi typu nordyckiego, fizyka badaczy rzeczywistości, poszukiwaczy prawdy, fizyka tych, którzy stworzyli badania naukowe. «Nauka jest międzynarodowa i zawsze taka pozostanie» – zaczniecie protestować. (…) W rzeczywistości tak samo, jak wszystko, co tworzy człowiek, również nauka zdeterminowana jest przez rasę albo krew. (…) Należy powiedzieć tu nieco o «fizyce» narodu żydowskiego, ponieważ stoi ona w jaskrawym przeciwieństwie do fizyki niemieckiej (…) fizyka żydowska dopiero niedawno poddana została wyważonej ocenie publicznej. Pod koniec wojny, kiedy Żydzi w Niemczech zaczęli dominować i narzucać ton, wezbrała niczym powódź i ujawniły się jej wszystkie cechy. Znalazła szybko gorliwych zwolenników wśród wielu autorów krwi innej niż żydowska albo nie czysto żydowska”. Oczywiście, przykładem fizyki żydowskiej par excellence musiał być Albert Einstein, jego teorie „kompletnie zgrały się w zetknięciu z rzeczywistością. Najwyraźniej nie były nawet w zamierzeniu prawdziwe. Żyd pozbawiony jest całkowicie zrozumienia prawdy innej niż tylko powierzchowna zgodność z rzeczywistością, [prawdy], która nie zależy od ludzkiej myśli. (…) Zdumiewające jest, że prawda czy rzeczywistość nie wydają się Żydowi czymś szczególnym bądź różnym od nieprawdy, lecz są one równoważne jednej z wielu możliwych opcji teoretycznych”.

Lenard nie mógł przeboleć, że powstaje nowa fizyka, tworzona m.in. przez Einsteina, a popierana ku jego niezadowoleniu przez Maksa Plancka czy Maksa Lauego, późn. von Laue – niewątpliwych etnicznych Niemców. Poglądy wygłaszane przez Lenarda, choć sformułowane prymitywniej, są w istocie zbliżone do zarzutów Duhema. Dla obu teoria względności sprzeczna była ze zdrowym rozsądkiem, była wykwitem zbyt dużej skłonności do abstrakcji oderwanej od rzeczywistości, przerośniętym esprit de géométrie. Duhem widział w tym cechę niemiecką, Lenard natomiast żydowską.

„«Ja cierpię» – Lepiej tak powiedzieć, niż powiedzieć: «Ten krajobraz jest brzydki»” (Simone Weil).