Kosmologia relatywistyczna w kwadrans I

Kosmologia, czyli nauka o wszechświecie jako jednym obiekcie fizycznym, została zapoczątkowana przez Einsteina w 1917 roku. Nauka ta ma więc zaledwie sto lat i niesamowite osiągnięcia: potrafimy dziś bardzo wiele powiedzieć na temat wszechświata, w którym się znajdujemy.

  • Sens równań Einsteina

Ponieważ nie chcemy wprowadzać aparatu matematycznego geometrii różniczkowej, skorzystamy ze sformułowania H.C. Baeza i E.F. Bunna, gdzie można znaleźć więcej szczegółów.

Wyobraźmy sobie niewielką kulę cząstek próbnych, które są względem siebie w spoczynku w chwili t=0 i spadają swobodnie w  polu grawitacyjnym. Jeśli chwilę odczekamy, kula ta pod działaniem grawitacji przekształci się w elipsoidę. Przesunięcia cząstek będą proporcjonalne do kwadratu czasu (mierzonego w środku naszej kuli). Objętość kuli także zmieni się proporcjonalnie do kwadratu czasu:

V(\delta t)=V(0)+\dfrac{1}{2}\ddot{V} \delta t^2,

gdzie \ddot{V} jest drugą pochodną objętości naszej kuli (pierwsza pochodna znika, ponieważ cząstki spoczywają w chwili początkowej). Jeśli w objętości naszej kuli znajduje się jakaś materia, to można ją opisać za pomocą gęstości \varrho oraz ciśnień, jakie ona wywiera: p_x, p_y, p_z. W teorii względności ciśnienie (które jest niczym innym niż strumieniem pędu cząstek przypadającym na jednostkę powierzchni) należy dodać do gęstości materii.

Dla naszej kuli cząstek próbnych (zakładamy, że ich masa i energia jest znikomo mała) obowiązuje równanie grawitacyjne:

\dfrac{\ddot{V}}{V}=-4\pi G \left(\varrho+\dfrac{p_x+p_y+p_z}{c^2}\right) \mbox{ (*)}.

Stała G jest stałą grawitacji. Okazuje się, że równanie to jest równoważne tensorowym równaniom Einsteina, musimy tylko dopuścić kule cząstek próbnych poruszających się w chwili początkowej z dowolnymi prędkościami względem naszego inercjalnego (swobodnie spadającego) układu odniesienia. Zazwyczaj ciśnienie jest symetryczne i możemy wtedy zapisać wyraz z ciśnieniami jako 3p/c^2.

Intuicyjny sens tego równania jest jasny: materia (a także ciśnienie) zmniejszają objętość kuli cząstek próbnych – grawitacja jest siłą przyciągającą. Jeśli nasza kula znajduje się w pustej przestrzeni, jej objętość się nie zmieni, zmieniać się będzie natomiast jej kształt.

  • Ekspansja wszechświata

Przyjmiemy przybliżenie wszechświata jednorodnego (taki sam w każdym miejscu) oraz izotropowego (taki sam w każdym kierunku). Obserwacje pokazują, że w dostatecznie dużej skali założenia te są spełnione. Wszechświat nasz się rozszerza, co można sobie wyobrazić, jak na rysunku: daleki obiekty (np. galaktyki) są wciąż względem siebie rozmieszczone tak samo, powiększa się jedynie skala tego obrazu. Możemy ją mierzyć za pomocą jednego parametru R(t). Mamy więc pewien wyróżniony układ współrzędnych dla wszechświata: względem niego galaktyki się nie poruszają (średnio biorąc, ponieważ mogą one mieć swoje prędkości własne, których na rysunku nie zaznaczyliśmy). Jest też jeden wyróżniony czas. Spoczynek galaktyk w tym naszym układzie współrzędnych jest ich ruchem w polu grawitacyjnym (linie stałych współrzędnych są krzywymi geodezyjnymi).

Rozszerzanie nie dotyczy obiektów bliskich, np. Układu Słonecznego albo naszej Galaktyki. Obserwacje wskazują, że R(t) jest funkcją rosnącą czasu. Chwila, w której R(t_{BB})=0, jest chwilą Wielkiego Wybuchu. Skala wszechświata byłaby w niej równa zeru, czyli wszystkie odległości zmniejszyłyby się do zera. Wielki Wybuch jest więc ściągnięciem (być może nieskończonej) przestrzeni do zera, osobliwością. Nie jest wybuchem np. bomby w przestrzeni, lecz wybuchem samej przestrzeni. Znaczy to tylko tyle, że ogólna teoria względności, jak i wszystko, co dziś wiemy, słuszne jest dla t>t_{BB}\equiv 0. Sytuacja jest podobna jak dla funkcji y=1/x: jest ona określona dla wartości x>0 i nie ma sensu w x=0. To wszystko nie wyklucza, że kiedyś jakaś lepsza teoria nie zastąpi owej osobliwości czymś skończonym, gdyż wielkości nieskończone to żadne przewidywanie.

  • Dynamika wszechświata Einsteina-de Sittera

Najprostszy model wszechświata wskazali w 1932 roku Albert Einstein i Willem de Sitter w krótkim komunikacie. Ponieważ chcemy skorzystać z równania Einsteina (*), więc powinniśmy rozpatrzyć kulę cząstek próbnych (galaktyk) spoczywających względem siebie w pewnej chwili. Na rysunku kula ta oznaczona jest jako B’.

Zmiany jej objętości łatwo powiązać ze zmianami jej promienia r(t). Otrzymujemy:

\dfrac{\ddot{V}}{V}=3\dfrac{\ddot{r}}{r}=-4\pi G \varrho,

gdzie pominęliśmy wyraz z ciśnieniem materii.

Wyobraźmy sobie teraz drugą kulę, która rozszerza się wraz z wszechświatem. Dla uproszczenia przyjmijmy, że obie kule mają jednakowy promień w chwili początkowej. Różnią się prędkościami ruchu, czyli pierwszymi pochodnymi współrzędnych, tak jak to zaznaczono na rysunku. Cząstki na powierzchni obu kul poruszają się z tym samym przyspieszeniem, ponieważ ich ruch jest spadaniem w polu grawitacyjnym, a wszystko spada z takim samym przyspieszeniem. Mamy zatem \ddot{R}=\ddot{r} i możemy poprzednie równanie przepisać dla kuli współporuszającej się z galaktykami:

3\dfrac{\ddot{R}}{R}=-4\pi G\varrho.

Zapisaliśmy to dla nieskończenie małej kuli, ale w jednorodnym i izotropowym wszechświecie równanie takie będzie słuszne dla kuli o dowolnych rozmiarach. Druga pochodna promienia równa jest

\ddot{R}=-\dfrac{4}{3}\pi R^3 \varrho \dfrac{G}{R^2}=-\dfrac{GM}{R^2}. \mbox{(2)}

Zastąpiliśmy iloczyn objętości kuli i gęstości masą M. Ta masa zawarta wewnątrz kuli nie zmienia się z czasem, ponieważ kula współporusza się z galaktykami. Otrzymaliśmy równanie, które ma prostą interpretację newtonowską. Jest to równanie ruchu ciała (czerwona kropka) w polu grawitacyjnym masy M.

Wiemy, że zależnie od wartości prędkości możliwe są dwie sytuacje: albo nasza czerwona kropka zawróci po osiągnięciu pewnej maksymalnej odległości, albo będzie oddalać się do nieskończoności. Ten sam wniosek dotyczy kuli galaktyk: albo zawrócą one w pewnej chwili, albo nigdy nie zawrócą i będą się oddalać nieograniczenie. Model Einsteina-de Sittera dotyczy sytuacji granicznej: gdy prędkość oddalania jest równa prędkości ucieczki. Jest to więc najmniejsza prędkość, przy której ekspansja nigdy się nie zatrzyma. Całkowita „energia” naszej czerwonej kropki równa się zero (piszemy w cudzysłowie, bo to nie jest energia świata, lecz jedynie wielkość analogiczna do energii, gdyż takie same równania mają takie same rozwiązania i możemy skorzystać z wiedzy przedeinsteinowskiej):

\dfrac{\dot{R}^2}{2}-\dfrac{GM}{R}=0 \Rightarrow R(t)\sim t^{\frac{2}{3}}.

W modelu tym wszechświat zaczyna się Wielkim Wybuchem. Einstein i de Sitter chcieli zbudować najprostszy relatywistyczny model rozszerzającego się wszechświata i niezbyt przejmowali się szczegółowymi wynikami obserwacji. Model ten ma jeszcze tę własność, że trójwymiarowa przestrzeń jest w nim płaska. W teorii Einsteina to sytuacja szczególna, nasza siatka galaktyk mogłaby bowiem być zakrzywiona.

Oczywiście na obrazku możemy przedstawić dwuwymiarowe powierzchnie, a w tym przypadku chodzi o trójwymiarową przestrzeń.

Wydaje się, że 3-przestrzeń naszego wszechświata jest płaska, tzn. jeśli byłaby zakrzywiona, to promień krzywizny musiałby być gigantyczny nawet w skali kosmologicznej.

  • Stała kosmologiczna = ciemna energia

Einstein zauważył, że z formalnego punktu widzenia jego równania pola mogą zawierać dodatkowy wyraz proporcjonalny do metryki. Fizycznie odpowiadałby on stałej gęstości energii w całej przestrzeni równej \varrho_{vac} c^2  oraz stałemu ciśnieniu p. Wyobraźmy sobie pewną objętość V. Energia w niej zawarta równa się \varrho_{vac} c^2 V. Z termodynamiki wiemy, że zmiana energii dE równa się pracy wykonanej nad układem -pdV. W naszym przypadku

dE=\varrho_{vac} c^2 dV=-pdV\Rightarrow p=-\varrho_{vac} c^2.

Nietypowy znak ciśnienia związany jest z tym, że teraz rozszerzanie powiększa energię zamiast ją zmniejszać, jak w przypadku gazu w naczyniu. Jeśli we wszechświecie nie ma żadnej innej formy energii, równania Einsteina przybierają postać:

3\dfrac{\ddot{R}}{R}=-4\pi G (\varrho_{vac} -3\varrho_{vac})=8\pi G \varrho_{vac}\equiv \Lambda c^2.

Parametr \Lambda zwany jest stałą kosmologiczną. Wszechświat taki prędzej czy później zacznie się rozszerzać (przyjmujemy, że stała kosmologiczna jest dodatnia), i to coraz szybciej. Pusty wszechświat ze stałą kosmologiczną nazywa się wszechświatem de Sittera. Czynnik skali R(t) rośnie wykładniczo z czasem:

R(t)=R_0\exp\left(\sqrt{\dfrac{\Lambda c^2}{3}}t\right).

Zauważmy, że w takim modelu nie ma Wielkiego Wybuchu, ponieważ czynnik skali zawsze jest dodatni. Oczywiście, wiemy, że w naszym wszechświecie występuje materia, a więc wszechświat de Sittera nie jest realistycznym modelem, lecz jedynie pewnym przybliżeniem. Obserwacje pokazują, że nasz wszechświat coraz bardziej zbliża się do świata de Sittera. Mówimy dziś o ciemnej energii, co jest inną nazwą dla stałej kosmologicznej (choć może się też okazać, że sytuacja jest bardziej skomplikowana i opis za pomocą \Lambda nie wystarczy).

  • Wszechświat Einsteina i wszechświat w XXI wieku

Stała kosmologiczna wprowadzona została przez Einsteina w pracy, która zapoczątkowała kosmologię w dzisiejszym sensie. Uczony sądził, że obserwacje wskazują, iż wszechświat jest statyczny, nie zmienia się z czasem. Równania pola grawitacyjnego nie dopuszczają takiej możliwości, dopóki nie wprowadzimy stałej kosmologicznej. Równanie (*) przybiera postać:

3\dfrac{\ddot{R}}{R}=-4\pi G\varrho+\Lambda c^2,

co można przekształcić podobnie jak dla modelu EdS:

\ddot{R}=-\dfrac{MG}{R^2}+\dfrac{\Lambda c^2}{3}R\mbox{ (3)}.

W porównaniu z (2) do przyciągającego wyrazu grawitacyjnego doszedł wyraz odpychający ze stałą kosmologiczną. Jeśli zażądamy, aby ich suma była równa zeru, otrzymamy statyczny model Einsteina z 1917 roku. Później, kiedy okazało się, że wszechświat się rozszerza, Einstein bez żalu pozbył się wyrazu kosmologicznego. Model statyczny był zresztą i tak nie do utrzymania, ponieważ nie jest on stabilny. Załóżmy bowiem, że dobraliśmy tak stałe, iż prawa strona równania (3) równa jest zeru. Mamy więc równowagę. Jeśli jednak powiększymy choćby nieznacznie czynnik skali R, to wzrosną oba wyrazy po prawej stronie i przyspieszenie będzie dodatnie, tzn. niewielki przyrost R powiększy się i nasz wszechświat zacznie się rozszerzać. Podobnie, jeśli zmniejszylibyśmy nieznacznie czynnik skali, prawa strona równania stałaby się ujemna i czynnik skali zacząłby się samorzutnie zmniejszać. Można to też pokazać, zapisując zasadę zachowania „energii” dla równania (3), podobnie jak to zrobiliśmy dla równania (2):

\dfrac{v^2}{2}-\dfrac{GM}{R}-\dfrac{\Lambda c^2 R^2}{6}\equiv E_k+E_p=const.

Nasza „energia” potencjalna ma w tym przypadku postać wzniesienia: jeśli nawet znajdziemy się na jego szczycie z zerową „energią” kinetyczną, to każde, nawet najmniejsze, zaburzenie wytrąci nas z położenia równowagi.

Sytuacja ta ma zasadnicze znaczenie dla naszego wszechświata, ponieważ zawiera on zarówno materię, jak i ciemną energię. Znajdujemy się już po prawej stronie zbocza i coraz szybciej staczamy się w dół, co oznacza, że wyraz kosmologiczny dominuje nad zwykłą grawitacją.

Źródło ilustracji: NASA

Na powyższym obrazku mamy porównanie kilku różnych modeli kosmologicznych. Linia czerwona oznacza 30% materii i 70% ciemnej energii (stałej kosmologicznej) – to są proporcje naszego wszechświata. Linia niebieska pokazuje, jak zachowywałby się czynnik skali, gdyby przyjąć, że ciemnej energii nie ma. Linia zielona odpowiada światowi Einsteina-de Sittera, w którym nie ma ciemnej energii. Wreszcie linia pomarańczowa opisuje wszechświat znacznie gęstszy od naszego, który najpierw się rozszerza, po czym zaczyna się kurczyć aż po Wielki Krach.

 

Tu jeszcze raz widzimy czynnik skali zgodny z obserwacjami naszego wszechświata. 3-przestrzeń jest płaska. Funkcję tę można wyrazić przez funkcje elementarne (por. koniec tekstu). Dla małych t zachowanie przypomina model EdS, później przełącza się na model dS (sama ciemna energia). Grawitacja zakrzywia funkcję w dół, ciemna energia wypycha ją w górę. W rezultacie powstaje krzywa dość zbliżona do linii prostej, ale jest to początek wykładniczego wzrostu.

  • Geometria modelu Einsteina

Nasze podejście do równań Einsteina utrudnia nieco zbadanie, jak wygląda geometria różnych modeli. Pokażemy poniżej, że model statyczny Einsteina opisywany jest geometrią sferyczną: tzn. 3-przestrzeń jest sferą trójwymiarową (powierzchnią kuli czterowymiarowej).

Mamy więc

3\dfrac{\ddot{V}}{V}=-4\pi G\varrho_0+\Lambda c^2=0.

Warunek ten otrzymany był dla niewielkiej kuli cząstek próbnych spoczywającej względem materii wszechświata Einsteina. Rozpatrzmy teraz inną kulę cząstek próbnych, która porusza się ruchem jednostajnym z prędkością v względem materii wszechświata. W układzie nowych cząstek próbnych materia świata ma większą energię: zamiast spoczynkowej mc^2 każda cząstka świata ma teraz energię mc^2+\frac{mv^2}{2} (zakładamy, że prędkość jest nierelatywistyczna). Ponadto długość w kierunku ruchu się skróci i objętość zmniejszy o czynnik \sqrt{1-\frac{v^2}{c^2}}\approx 1-\frac{1}{2}\frac{v^2}{c^2}. Łącznie gęstość naszej materii wzrośnie:

\varrho=\varrho_0\left(1+\dfrac{v^2}{c^2}\right).

W naszym układzie odniesienia pojawi się też ciśnienie w kierunku ruchu, ponieważ wszystkie cząstki poruszają się z taką samą prędkością v.

Pęd transportowany przez powierzchnię o polu S w czasie \delta t będzie równy całkowitemu pędowi cząstek na rysunku, czyli \varrho_0 vv\delta t S, a ciśnienie prostopadłe do powierzchni będzie równe p=\varrho_0 v^2. Łącznie otrzymamy

\dfrac{\ddot{V}}{V}=-8\pi G\varrho_0\dfrac{v^2}{c^2}. \mbox{ (4)}

Co to znaczy, że przestrzeń jest zakrzywiona? Prędkości naszych cząstek próbnych są jednakowe i każda z nich porusza się po południku. Zakrzywienie przestrzeni będzie przejawiać się w tym, że takie równolegle poruszające się cząstki będą się do siebie zbliżać: dwóch podróżników startujących na północ z dwóch punktów równika spotka się na biegunie północnym. Kula poruszająca się w przestrzeni kulistej (możemy sobie wyobrazić koło poruszające się po powierzchni sferycznej) o promieniu krzywizny R_U zostaje skrócona w kierunku prostopadłym do ruchu, ponieważ jej cząstki biegną po południkach, a te zbiegają się ku sobie.

Wyobraźmy sobie, że skrajne cząstki naszego koła poruszają się po południkach tworzących ze sobą kąt \delta \varphi. Obie cząstki poruszają się z przyspieszeniem dośrodkowym. Patrząc sponad bieguna północnego naszej kuli, zaobserwujemy przyspieszenia obu cząstek \vec{a}_1 oraz \vec{a}_2.

Przyspieszenie względne, jak to widać z rysunku, będzie równe

\ddot{y}=-a\delta\varphi=-\dfrac{v^2}{R_U}\dfrac{y}{R_U}=-y\dfrac{v^2}{R_U^2}.

Wobec tego kula 3D cząstek próbnych skróci się w kulistej przestrzeni w dwóch wymiarach prostopadłych do kierunku ruchu i będziemy mieli

\dfrac{\ddot{V}}{V}=2\dfrac{\ddot{r}}{r}=-\dfrac{2v^2}{R_U^2}.

Wstawiając ten wynik do równania (4), otrzymamy warunek

\dfrac{2 v^2}{R_U^2}=8\pi G \varrho_0 \dfrac{v^2}{c^2} \Rightarrow R_U=\dfrac{c}{\sqrt{4\pi G\varrho_0}}=\dfrac{1}{\sqrt{\Lambda}}.

Tyle właśnie otrzymał Einstein. Wniosek ten dość mu się podobał, ponieważ wszechświat miałby skończoną objętość, a zarazem nie miał brzegu.

  • Zależność czynnika skali od czasu

Obliczmy czynnik skali wszechświata dla płaskiego świata zbudowanego z chłodnej materii (p=0) i ciemnej energii. Jest to przypadek naszego wszechświata. Płaskość 3-przestrzeni oznacza, że suma „energii” kinetycznej i potencjalnej jest równa zeru:

\dfrac{1}{2}\dot{R}^2=\dfrac{GM}{R^2}\Rightarrow H^2\equiv \dfrac{1}{R^2}\left(\dfrac{dR}{dt}\right)^2=\dfrac{8\pi G \varrho_{crit}}{3}.

Otrzymaliśmy warunek, jaki spełniać musi gęstość wszechświata: musi być ona równa \varrho_{crit}. Wyrażenie \frac{\dot{R}}{R} nazywa się stałą Hubble’a. Stała Hubble’a zależy od czasu (nie jest więc ściśle biorąc stałą). W przypadku gdy wszechświat jest płaski, lecz zawiera oprócz zwykłej materii także ciemną energię, warunek płaskości przybiera postać:

\varrho_{crit}=\varrho_m+\varrho_{vac}.

Przeważnie zapisuje się to, podając ułamek energii każdego składnika:

\Omega_m+\Omega_{\Lambda}=1,\,\mbox{ gdzie } \Omega_m\equiv\dfrac{\varrho_m}{\varrho_{crit}} \mbox{ oraz } \Omega_{\Lambda}\equiv\dfrac{\varrho_{vac}}{\varrho_{crit}}.

Stała Hubble’a w danym momencie od Wielkiego Wybuchu nie zależy od konkretnego wyboru czynnika skali, można więc wybrać go tak, jak lubią astronomowie obserwacyjni, żeby obecna skala wszechświata była równa 1. Możemy teraz napisać:

\dfrac{1}{R}\dfrac{dR}{dt}=H_0 \sqrt{ \dfrac{\Omega_{m,0}}{R^3}+\Omega_{\Lambda,0} }.

W ostatnim równaniu wyraziliśmy gęstości o prawej stronie przez ich dzisiejsze wartości (gęstość materii skaluje się jak R^{-3}, gęstość energii próżni się nie zmienia). Chcemy teraz wyznaczyć z tego równania funkcję R(t). Pomnóżmy obie strony równania przez \frac{3}{2} R^{3/2}, otrzymujemy wówczas;

\dfrac{ dR^{\frac{3}{2}} }{dt}=\dfrac{3}{2}H_0 \sqrt{ \Omega_{m,0}+\Omega_{\Lambda,0}R^{3} }.

Jeśli wprowadzimy nową zmienną u=R^{3/2}, możemy nasze równanie przepisać w postaci

\dfrac{du}{\sqrt{ k^2+u^2} }=\dfrac{3H_0 \sqrt{\Omega_{\Lambda,0}}}{2} dt,

gdzie k^2\equiv \frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}. Wykonując jeszcze jedno postawienie u=k\sinh \zeta, otrzymamy

\zeta=\dfrac{3H_0 \sqrt{\Omega_{\Lambda,0}}}{2} t,

a wracając do starej zmiennej, możemy zapisać wyrażenie na czynnik skali:

R=\left( \dfrac{\Omega_{m,0}} {\Omega_{\Lambda,0} }\right)^{\frac{1}{3}} \sinh^{\frac{2}{3}} \dfrac{3H_0 \sqrt{\Omega_{\Lambda,0} }}{2} t .

Wyrażenie to pozwala natychmiast zobaczyć, że dla małych czasów (\sinh x\approx x) czynnik skali rośnie jak t^{\frac{2}{3}}, dla dużych natomiast staje się wykładniczy (\sinh x\approx \frac{1}{2}e^{x}). Możemy więc opisać ewolucję naszego wszechświata za pomocą trzech parametrów dzisiejszego wszechświata: stałej Hubble’a oraz dwóch gęstości.

  • Wiek wszechświata

Znajomość obecnego składu wszechświata $latex \Omega_{m,0}$ oraz $latex \Omega_{\Lambda,0}$ wraz ze znajomością dzisiejszej stałej Hubble’a pozwala też obliczyć czas T, jaki upłynął od Wielkiego Wybuchu (czyli czas, gdy a(T)=1):

T=\dfrac{2}{3 H_0 \sqrt{\Omega_{\Lambda,0} }} \,\mbox{artgh}\, \sqrt{\Omega_{\Lambda,0}  }.

Dla danych misji Planck z roku 2015: \Omega_{m,0}=1-\Omega_{\Lambda,0}=0.3089 i stałej Hubble’a H_0=67.90 km/s/Mpc wiek wszechświata T=13.80\cdot 10^9 lat. Zadziwiające jest, że tak niewielka liczba parametrów (gęstość, stała Hubble’a plus wiedza o płaskości) wystarczy do obliczenia, co dzieje się z obiektem tak skomplikowanym jak wszechświat.