Fizyka dla mieszkańców Syriusza: stałe fizyczne (Max Planck, 1899-Matvei Bronstein, 1935)

Max Planck, profesor fizyki w Berlinie, najwybitniejszy niemiecki fizyk teoretyczny przełomu wieku XIX i XX, przez lata badał własności promieniowania termicznego. Idealnym obiektem badań jest tu tzw. ciało doskonale czarne, czyli takie, które pochłania całe padające nań promieniowanie. Można wykazać, że każde ciało doskonale czarne emituje promieniowanie o rozkładzie widmowym zależnym wyłącznie od temperatury. Np. Słońce jest w dobrym przybliżeniu ciałem doskonale czarnym.

Widzimy tu (szary) teoretyczny rozkład widmowy promieniowania ciała doskonale czarnego o temperaturze T=5777 K zestawiony z rzeczywistym promieniowaniem docierającym ze Słońca. Ciało doskonale czarne nie jest czarne, jego barwa zależy od temperatury. (obrazek: Wikimedia)

Znalezienie postaci krzywej widmowej tego promieniowania stało się największym osiągnięciem Maksa Plancka. Otrzymana przez niego zależność ma następującą postać

I(\lambda)=\dfrac{2hc^2}{\lambda^5}\,\dfrac{1}{\exp{(\frac{hc}{\lambda kT})}-1},

gdzie stałe k,c, h oznaczają odpowiednio stałą Boltzmanna (nazwa wprowadzona przez Plancka), prędkość światła w próżni i stałą Plancka. Mamy tu trzy stałe fizyczne, które ze względu na uniwersalność promieniowania powinny mieć fundamentalne znaczenie.

Max Planck zauważył (w roku 1899, zanim jeszcze wyprowadził swój słynny wzór), że stałe k, c,h w połączeniu ze stałą grawitacyjną G pozwalają wprowadzić jednostki niezależne od zaszłości ludzkiej historii czy w ogóle niezależne od naszych ludzkich parametrów: „pojawia się możliwość ustanowienia jednostek długości, masy, czasu i temperatury niezależnych od szczególnych ciał czy substancji, których znaczenie dla wszystkich czasów i wszystkich kultur, także pozaziemskich i pozaludzkich, pozostanie w konieczny sposób takie same”.

Stała Plancka to h=6,7\cdot 10^{-34} kg\cdot m^2/s , stała grawitacyjna to G=6,7\cdot 10^{-11} m^3/(kg\cdot s^2). Mamy więc dla ich iloczynu i ilorazu jednostki:

[hG]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{m}^3}{\mbox{kg}\cdot \mbox{s}^2}=\dfrac{\mbox{m}^3}{\mbox{s}^3}\mbox{m}^2=[c^3]\mbox{m}^2,

[h/G]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{kg}\cdot \mbox{s}^2}{\mbox{m}^3}=\mbox{kg}^2\cdot \dfrac{\mbox{s}}{\mbox{m}}=\mbox{kg}^2 [c^{-1}].

Zatem wielkości l_P, m_P będą nowymi „pozaziemskimi” jednostkami długości oraz masy:

l_P=\sqrt{\dfrac{hG}{c^3}}=4\cdot 10^{-35}\mbox{ m} ,

m_P=\sqrt{\dfrac{hc}{G}}=5,5\cdot 10^{-8}\mbox{ kg}.

Jednostkę czasu otrzymamy, dzieląc odległość przez prędkość światła:

t_P=\sqrt{\dfrac{hG}{c^5}}=1,3\cdot 10^{-43}\mbox { s}.

Te „pozaziemskie” jednostki Planck nazwał naturalnymi, a my dziś nazywamy układem jednostek Plancka. Podstawowe stałe fizyki mają w nim wartości równe 1: h=c=G=1. W roku 1899 interesująca wydawała się sama możliwość wprowadzenia jednostek, umożliwiających porozumiewanie się z fizykiem z Syriusza, który ma – jak to dobrze wiemy – postać  świecącego zielono dodekahedronu zanurzonego w inteligentnym oceanie (oni tam szybciej weszli w fazę AI).

Jednostki długości i czasu w układzie Plancka są skrajnie małe: nie tylko w porównaniu z nami, ale nawet z protonem i czasem potrzebnym światłu na przebycie jego wnętrza. Sens fizyczny tych jednostek stał się jasny znacznie później.

Najpierw powiedzmy, jak interpretuje się dziś stałe użyte przez Plancka.

Stała Boltzmanna jest w zasadzie przelicznikiem temperatury w kelwinach T na wartości energii kT – byłoby logiczniej z punktu widzenia fizyki mierzyć temperatury w jednostkach energii, a skoro tego nie robimy, potrzebujemy stałej Boltzmanna. Według najnowszych ustaleń od roku 2019 stała Boltzmanna równa jest dokładnie k=1,380649\cdot 10^{-13} J/K. Jest to tym samym nowa definicja kelwina (bo dżul zdefiniowany jest na podstawie kilograma, metra i sekundy).

Prędkość światła, czy ogólniej: każdego promieniowania elektromagnetycznego, w próżni wydawała się już około roku 1900 wielkością bardzo ważną. Dzięki teorii względności z roku 1905 wiemy, że jest to coś więcej niż pewna charakterystyczna prędkość w przyrodzie. Jest to bowiem naturalna granica prędkości ciał. Z punktu widzenia teorii względności prędkość światła jest właściwie przelicznikiem między odległościami a czasem. W fizyce poeinsteinowskiej odległości i czas należałoby mierzyć tymi samymi jednostkami. Inaczej mówiąc, stała c wyraża stosunek jednostek odległości do jednostek czasu. Jej wartość w dzisiejszej fizyce jest na mocy konwencji równa dokładnie c=299\,792\, 458 m/s$. Ta dziwna wartość wynika z potrzeby ciągłości dawnych i nowych jednostek.

Trzecia stałą, pojawiającą się we wzorze Plancka, jest oznaczana przez niego literą h wielkość, dziś zwana stałą Plancka. Pojawia się ona wszędzie tam, gdzie występują zjawiska kwantowe. Podstawowe równanie fizyki kwantowej, równanie Schrödingera, można zawsze zapisać w postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi,

gdzie i to jednostka urojona, a \hbar\equiv \dfrac{h}{2\pi}, \psi jest funkcją falową, a H – hamiltonianem, czyli matematycznym zapisem energii układu. Planck z początku nie wiedział, jak ogromne znaczenie ma jego stała wprowadzona dla promieniowania. Obecnie (od roku 2019) wartość stałej Plancka jest określona raz na zawsze jako h=6,67607015\cdot 10^{-34} J·s. W istocie, jest to nowa definicja kilograma, słynny wzorzec z Sèvres jest już niepotrzebny (kilogram pojawia się w jednostce energii: 1\mbox{J}=1 \mbox{kg}\cdot \dfrac{\mbox{m}^2}{\mbox{s}^2}.).

Stałe h,c,G określają możliwe teorie fundamentalne fizyki. Sytuację tę można przedstawić za pomocą sześcianu Bronsteina (sam obrazek jest późniejszy):

 

W początku układu mamy mechanikę klasyczną bez grawitacji. Odpowiada to wartościom \hbar=G=1/c=0. Szczególna teoria względności odpowiada przyjęciu 1/c<\infty, mechanika kwantowa przyjęciu niezerowej stałej Plancka \hbar\neq 0. Kwantowa teoria pola, czyli Model Standardowy cząstek odpowiada \hbar\neq 0 oraz c<\infty. Ogólna teoria względności zawiera stałą grawitacji G oraz prędkość światła c. Kwantowa teoria grawitacji byłaby „teorią wszystkiego” w tym sensie, że zawierałaby zarówno efekty kwantowe, jak i grawitacyjne. Wszystkie trzy stałe byłyby w niej niezerowe.

Matvei Bronstein, dwudziestoparolatek, już w roku 1933 zaczął się zastanawiać nad kwantowaniem grawitacji. Pięć lat później już nie żył, aresztowany i skazany na śmierć podczas wielkiego terroru w Związku Sowieckim. Także Lew Landau, największy rosyjski teoretyk, był wówczas aresztowany. W jego przypadku pomogła interwencja Piotra Kapicy.

Sześcian Bronsteina jest tylko prostą ilustracją jednego z aspektów poszukiwanej kwantowej teorii grawitacji: wszystkie trzy fundamentalne stałe miałyby w niej skończoną wartość. Wszystkie te stałe (wraz ze stałą Boltzmanna) pojawiają się w we wzorze Hawkinga na temperaturę czarnej dziury. Układ Plancka byłby w kwantowej grawitacji naturalnym układem jednostek. Znaczy to, że zjawisk kwantowych związanych z grawitacją należy oczekiwać w skali długości Plancka, czyli znacznie poniżej dostępnych dziś w badaniach. Masa Plancka jest niemal porównywalna z naszymi jednostkami. Znaczy to jednak, że odpowiadająca jej energia równa będzie E_P=m_P c^2=4,9\cdot 10^{9} J. W teorii fundamentalnej jest to energia olbrzymia, widać to, gdy wyrazimy ją w elektronowoltach:  E_P=3,07\cdot 10^{28} eV. Dla porównania najdroższy akcelerator w dziejach fizyki, LHC w CERN-ie, może maksymalnie osiągnąć energię 14 TeV, czyli 14\cdot 10^{12} eV – jest to piętnaście rzędów wielkości poniżej energii Plancka.

Wartości stałych fundamentalnych stanowią rodzaj przelicznika pomiędzy naszymi zwykłymi jednostkami, jak metry, sekundy, kilogramy, a jednostkami, jakich używa przyroda, zrozumiałymi dla kolegi z Syriusza. Nb. matematyka jest zapewne jedynym językiem, w którym moglibyśmy się z owym dodekaedrem porozumieć. Może należy zwrócić na to uwagę w dyskusji dotyczącej matury z matematyki: matematyka to jedyny język, w którym możemy się porozumiewać z mieszkańcami Syriusza czy szerzej: ze wszechświatem. Zastosowania są chyba oczywiste.

Niezależne od jednostek są stałe bezwymiarowe. Np. kwadrat ładunku elektronu można wyrazić następująco:

\alpha=\dfrac{q_e^2}{4\pi\varepsilon_0 \hbar c}=\dfrac{1}{137,036}.

Mając jeszcze do dyspozycji masę elektronu m_e, można wyrazić wszystkie wielkości atomowe. Energia wiązania elektronu w atomie wodoru to

E_j=\alpha^2 m_e c^2=13,6 \mbox{ eV},

a promień atomu (tzw. promień Bohra):

r=\dfrac{\hbar}{\alpha m_e c}=0,5\cdot 10^{-10}\mbox{ m}.

Wielkości te określają skalę zjawisk atomowych i cząsteczkowych. W  fundamentalnej teorii wszystkiego powinniśmy masę elektronu wyrazić w masach Plancka, a promień Bohra w długościach Plancka.

Ilu różnych bezwymiarowych stałych potrzebujemy do opisu świata? Używamy jednostek Plancka. Zatem grawitacja kwantowa nie zawiera żadnych dowolnych stałych. Model Standardowy potrzebuje trzech stałych określających siłę oddziaływań: oprócz \alpha dla oddziaływań elektromagnetycznych, potrzeba jeszcze stałych dla oddziaływań słabych i silnych. W sumie mamy 3 stałe. Dalej, potrzebujemy mas: sześciu kwarków, trzech leptonów i trzech neutrin oraz bozonu Higgsa (wszystko wyrażamy w masach Plancka, więc są to wielkości bezwymiarowe). Dotąd mamy 16 stałych. Potrzebna jest jeszcze wartość oczekiwana pola Higgsa: stała nr 17. Kolejnych 8 stałych bierze się z różnych macierzy mieszania. Daje to 25 parametrów, przy czym większość wynika z Modelu Standardowego. Wielkość ciemnej energii jest parametrem nr 26 (jeśli ciemna energia to stała kosmologiczna). Z jednej strony jest tych stałych za wiele jak na fundamentalną teorię, z drugiej strony jednak od czterdziestu lat nikt nie potrafi wskazać teorii bardziej ekonomicznej, a te stałe nie są jakimiś kaprysami teoretyków, lecz potwierdzane są w eksperymentach (tutaj LHC ma jak najbardziej zastosowanie).

Więcej szczegółów nt. stałych w artykule Johna Baeza.

 

Reklamy