Czarne dziury – największy błąd Einsteina?

Ogłoszono dziś przyznanie Nagród Nobla z fizyki za czarne dziury. Roger Penrose jest matematykiem, który wykazał w latach sześćdziesiątych XX w., że obiekty takie są nieuchronnym wnioskiem z Einstenowskiej teorii względności. Drugą połowę nagrody otrzymali astronomowie, którzy wykazali, iż w centrum Galaktyki znajduje się ogromna czarna dziura. Poniżej piszę o paradoksalnej prehistorii tego problemu. Rozwiązanie równań Einsteina opisujące czarną dziurę otrzymał Karl Schwarzschild parę tygodni po ogłoszeniu teorii Einsteina. Wiemy dziś, że rozwiązanie to całkiem dobrze opisuje czarne dziury występujące we wszechświecie. Zatem równania znane były od roku 1915, w roku 1939 Robert Oppenheimer opisał, jak czarna dziura może powstać wskutek zapadania grawitacyjnego. Uczeni starali się jednak wyprzeć taką możliwość i nawet sam Oppenheimer nie traktował swej pracy poważnie. Sądzono powszechnie, że równania Oppenheimera i Snydera są tylko ciekawostką matematyczną. Zakładali oni w obliczeniach, że podczas zapadania się gwiazda ma idealną symetrię sferyczną. Był to słaby punkt, bo trudno sobie wyobrazić implozję, która zachowuje się aż tak idealnie. Przełom nastąpił ćwierć wieku później, gdy Roger Penrose wykazał, że czarne dziury pojawiają się bez względu na symetrię. Grawitacja jest siłą przyciągającą i działa tym silniej, im bliżej siebie znajdują się cząstki materii. Może dojść do sytuacji, że siły grawitacyjne pokonają nawet siły jądrowe wewnątrz materii i nasze zbiorowisko cząstek zamieni się w czystą energię grawitacyjną, najprostszy obiekt w przyrodzie, opisany ponad sto lat temu. Swoją drogą szkoda, że Komitet Noblowski nie pospieszył się bardziej, bo w rozwijanie koncepcji czarnych dziur wniósł też wkład zmarły przed dwoma laty Stephen Hawking. Być może uznali, że prace Hawkinga były zbyt spekulatywne. Choć prawdą jest, że to krótka praca Penrose’a z „Physical Review Letters” uruchomiła lawinę.

Nauka postępuje, robiąc błędy. Szczerze mówiąc, niewiele jest prac pionierów, które byłyby z dzisiejszego punktu widzenia prawidłowe. M.in. dlatego tak trudno być odkrywcą: trzeba dostrzec zarysy ładu w ogólnym chaosie i mętliku, zanim kurz opadnie i zanim sytuacja się wyklaruje (wtedy już wszyscy są mądrzy). Nic dziwnego, że w takich okolicznościach często widzi się nie to, co trzeba, albo odnajduje zarysy innego gmachu, niż ten, który ostatecznie zostanie zbudowany. Pionierzy są zwykle ludźmi twardymi, którzy mają jasną wizję świata, i jeśli ten prawdziwy nie przystaje do ich wizji, tym gorzej dla rzeczywistego świata.

Mówi się nieraz o błędach, popełnianych przez wielkich uczonych. Są one rzekomo przydatne, otwierają bowiem drogę do postępu. Nie wiem, czy to prawda. Znam z bliska wiele różnych sytuacji z historii nauki i moje wrażenie jest raczej takie, że pionierzy gotowi są iść za swoją wizją bez względu na koszty. I przeważnie mają w nosie, co inni sądzą na ten temat. Gdyby pozwalali się terroryzować przyjętym poglądom, do niczego by nie doszli. W skrytości ducha uważają opinię powszechną za głos durniów, choć zwykle są na tyle dobrze wychowani, by nie mówić tego głośno. Gotowi są iść za swoją wizją (najpierw trzeba ją oczywiście mieć: na tym etapie odpadają zwykli wyrobnicy), ryzykując wielką przegraną. W nauce (i to jest w niej piękne) powiedzenia Audaces fortuna iuvat nie trzeba tłumaczyć jako „szczęście sprzyja łajdakom”.

Mówi się czasem, że Albert Einstein za największy błąd swego naukowego życia uznał wprowadzenie stałej kosmologicznej. Rzecz jest o tyle zabawna, że obecnie, po latach, stała kosmologiczna pojawiła się znowu – teraz mówi się na nią ciemna energia. Szczerze mówiąc, stała kosmologiczna nie mogła być ani błędem, ani zasługą Einsteina. Wyraz taki można wprowadzić do równań jego teorii grawitacji (tzw. ogólnej teorii względności), ale na gruncie fizyki klasycznej nie ma poważnych powodów, aby to zrobić. Zatem brzytwa Ockhama nakazuje raczej odciąć zbędne narośla niż je pielęgnować. Zawsze lepsza jest teoria oszczędniejsza: np. heliocentryczna w porównaniu do geocentrycznej.

Z czarnymi dziurami jest nieco inaczej. Stosowne rozwiązanie równań Einsteina uzyskał Karl Schwarzschild w roku 1915. Była to jedna z pierwszych prac badających konsekwencje nowej teorii grawitacji. Zastosowanie dość oczywiste z punktu widzenia astrofizyka: gwiazdy są sferyczne, ciekawe więc, co nowa teoria ma do powiedzenia na temat sytuacji, gdy panuje symetria sferyczna. Schwarzschild przesłał swoją pracę z frontu rosyjskiego, kilka miesięcy później nabawił się rzadkiej choroby zakaźnej, pęcherzycy, i umarł. Jego syn, Martin, mający wówczas równo cztery lata, został z czasem wybitnym specjalistą od ewolucji gwiazd. Piękny przykład, jak ojciec, nawet zmarły, może wpłynąć na los dziecka.

Rozwiązanie Schwarzschilda zachowywało się dziwnie w dwóch punktach: r=0 oraz r=rs, gdzie r oznacza odległość od środka; wielkość rs jest dziś nazywana promieniem Schwarzchilda, gdyby całą rozważaną masę M skupić w kuli o promieniu rs , to prędkość ucieczki z jej powierzchni byłaby równa prędkości światła, inaczej mówiąc światło nie mogłoby uciec z tak silnego pola grawitacyjnego. Zastanawiano się już w XVIII wieku nad możliwością istnienia takich ciemnych gwiazd. Promień Schwarzschilda dla Słońca równy jest tylko 3 km – a więc należałoby upchnąć całą jego masę w tak małej kuli, co wydawało się niemożliwe. Sądzono więc, że mamy do czynienia z tzw. zagadnieniem akademickim, czyli nieinteresującym nikogo.

Albert Einstein nie lubił osobliwości w równaniach i w 1939 roku opublikował pracę, w której dowodził, że promień Schwarzschilda nie może zostać osiągnięty przez zapadanie się masy pod wpływem własnej grawitacji. W podsumowaniu pisał: „Osobliwość Schwarzschilda nie może się pojawić, ponieważ materii nie można dowolnie zgęścić. A nie można, ponieważ cząstki wchodzące w jej skład musiałyby osiągnąć prędkość światła”.

Einstein nie miał racji, wykazali to w tym samym roku Robert J. Oppenheimer i jego student Hartland Snyder. Punktem wyjścia Oppenheimera była astrofizyka. Gwiazdy nie zapadają się do wewnątrz, ponieważ wytwarzają energię i ciśnienie gazu (które jest energią ruchu cząstek) przeciwdziała grawitacyjnemu zapadaniu. Jednak gdy paliwo jądrowe się wyczerpie, grawitacja wygrywa i gwiazda staje się znacznie mniejsza niż na początku. Gwiazda może zostać tzw. białym karłem, znano przykłady takich supergęstych gwiazd. Jednak Subrahmanyan Chandrasekhar udowodnił, że białe karły nie mogą być stabilne przy masie powyżej 1,4 masy Słońca. Oznacza to, że Słońce może zostać kiedyś białym karłem. Co jednak z gwiazdami masywniejszymi? Oppenheimer ze współpracownikami wykazali, że inną możliwością jest powstanie tzw. gwiazdy neutronowej: czegoś w rodzaju gigantycznego jądra atomowego zbudowanego z samych neutronów i związanego grawitacją. Jednak i w tym przypadku istniała górna granica masy takiego tworu. Co się stanie, jeśli masa gwiazdy jest tak duża, że ani biały karzeł, ani gwiazda neutronowa nie będą możliwe? Tym właśnie zajęli się Oppenheimer i Snyder. Dowodzili, że kolaps – zapadanie się grawitacyjne – jest nieuniknione przy odpowiednio dużej masie obiektu. Opisali też, co się dzieje, gdy obserwujemy taki grawitacyjny kolaps. Z punktu widzenia obserwatora oddalonego od gwiazdy szybkość tego kolapsu staje się coraz mniejsza, a światło do niego dochodzące jest coraz mocniej przesunięte w stronę czerwieni.

Schwarzschilddiagram

(Rysunek 32.1 C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, t. 3)

Na wykresie czas jest na osi pionowej, odległość od centrum na osi poziomej. Wielkość r/M=2 odpowiada promieniowi Schwarzschilda, obszar zakreskowany to wnętrze gwiazdy. Gruba czarna linia odpowiada ruchowi powierzchni gwiazdy, dąży ona asymptotycznie do prostej r/M=2, co oznacza, że ruch staje się coraz wolniejszy i powierzchnia nigdy nie zapadnie się pod promień Schwarzschilda. I rzeczywiście tak jest, ale tylko z punktu widzenia odległego obserwatora. Gdybyśmy poruszali się razem z tą powierzchnią gwiazdy, nasz zegar wskazywałby czas zaznaczony na rysunku jako τ. Dla nas spadanie trwałoby pewien skończony czas i po przekroczeniu promienia Schwarzschilda spadalibyśmy dalej, osiągając w skończonym czasie punkt centralny r=0. Wnioski te (choć nie rysunek) znalazły się w pracy Oppenheimera i Snydera. Pisali oni: „Kiedy wszystkie źródła energii termojądrowej zostaną wyczerpane, gwiazda o dostatecznie dużej masie skolapsuje (zapadnie się) (…) Całkowity czas kolapsu dla obserwatora poruszającego się razem z materią gwiazdy jest skończony i dla wyidealizowanego przypadku oraz typowej masy gwiazdy jest rzędu jednej doby. Obserwator zewnętrzny widzi gwiazdę asymptotycznie kurczącą się do promienia grawitacyjnego [tzn. promienia Schwarzschilda]”.

Musiało minąć trzydzieści lat, zanim zrozumiano, że praca Oppenheimera i Snydera jest prawidłowa. Wiemy dziś, że po przekroczeniu promienia Schwarzschilda nie mamy już żadnej możliwości: musimy spaść na punkt r=0. Widać to na wykresie dzięki stożkom świetlnym. Każdy obserwator musi poruszać się wolniej niż prędkość światła, a to oznacza geometrycznie, że jego przyszłość leży wewnątrz stożka. Poniżej promienia Schwarzschilda stożki przyszłości zwrócone są ku r=0: jeśli nawet nic nie będziemy robić spadniemy do środka. Zresztą jeśli będziemy coś robić, też spadniemy: osobliwość w r=0 jest naszą przyszłością. I nawet nikomu nie będziemy się mogli poskarżyć, ponieważ promienie świetlne leżą na powierzchni stożka przyszłości, a więc i one spadną na r=0.

Ani Einstein, ani znacznie młodszy Oppenheimer nie dożyli momentu, gdy zrozumiano, czym są czarne dziury. Gdyby Oppenheimer żył dłużej, dostałby niewątpliwie Nagrodę Nobla za swoje prace związane z astrofizyką, pamiętamy go dziś raczej z powodu projektu Manhattan – prac nad budową bomb atomowych. Nie wiadomo, czy Einstein i Oppenheimer kiedykolwiek rozmawiali o tych swoich wzajemnie sprzecznych pracach z roku 1939. Po II wojnie światowej Oppenheimer był dyrektorem Instytutu Badań Zaawansowanych w Princeton, a więc formalnie „szefem” Einsteina i choćby dlatego spotykali się wiele razy. Nie sądzę jednak, aby Einstein gotów był się zgodzić z Oppenheimerem w kwestii kolapsu. Pewnie więc do niczego by taka dyskusja nie doprowadziła.

004

Fotografia Alfreda Eisenstaedta dla czasopisma „Life”, rok 1947. Poniżej inne zdjęcie tego samego autora.

005

Eudoksos i jego hippopede: początki greckiej astronomii matematycznej (pierwsza poł. IV w. p.n.e.)

Urodzony w Knidos, w Azji Mniejszej (dzisiejsza Turcja), Eudoksos syn Aischinesa był lekarzem, astronomem, geometrą i prawodawcą we własnym mieście – zestaw umiejętności zbliżony do tych, z których niemal dwa tysiące lat później słynął, choć w innych proporcjach, także Mikołaj Kopernik. Spośród wszystkich rozrzuconych po Śródziemnomorzu kolonii greckich w polityce, sztuce, filozofii nadal przodowały Ateny, które jednak wchodziły w fazę zmierzchu po złotym wieku. Na zewnątrz murów miejskich Platon, uczeń Sokratesa, założył swoją słynną Akademię. Jednym z jego uczniów był Eudoksos. Pisze Diogenes Laertios:

Kiedy miał bowiem dwadzieścia trzy lata i żył w trudnych warunkach materialnych, znęcony sławą sokratyków udał się do Aten wraz z lekarzem Teomedontem, na którego utrzymaniu pozostawał (a jak twierdzili niektórzy był jego kochankiem). Gdy wylądowali w Pireusie, zamieszkał tam i co dzień udawał się do Aten, gdzie słuchał wykładów sofistów, po czym wracał do swego mieszkania. Po upływie dwóch miesięcy wrócił do ojczyzny… (przeł. B. Kupis)

Był to początek licznych podróży Eudoksosa: spędził jakiś czas w Egipcie, w Kyzikos, na Sycylii, a także na dworze Mauzolosa (to na jego cześć wzniesiono pierwsze Mauzoleum) i znowu w Atenach. Był wybitnym matematykiem, jego teoria proporcji pozwoliła w sposób ścisły włączyć do matematyki liczby niewymierne, wskazuje się nieraz na jej podobieństwo z pracami Richarda Dedekinda i Karla Weierstrassa w drugiej połowie XIX wieku, kiedy także stanął przed matematykami problem umocnienia podstaw ich dyscypliny. Wiele wyników Eudoksosa trafiło później do Elementów Euklidesa.

Nas interesuje tutaj jedno konkretne odkrycie, a właściwie pewien błyskotliwy pomysł geometryczny Eudoksosa. Pamiętajmy, jesteśmy w IV w. p.n.e., nieznana jest jeszcze spora część geometrii, obserwacje astronomiczne rzadko bywają ścisłe, nie ma zresztą dokładnych zegarów, co w astronomii jest konieczne. Znamy natomiast wygląd nocnego nieba, znają go wszyscy. Wiemy, że gwiazdy krążą wokół obserwatora w rytmie doby gwiazdowej (nieco krótszej niż słoneczna). Łatwo to wyjaśnić: przymocowane są do sztywnej sfery, która wiruje w rytmie dobowym wokół Ziemi. Nietrudno też wyjaśnić roczny ruch Słońca na niebie: najwyraźniej okrąża ono w ciągu roku koło nachylone względem równika sfery niebieskiej. Punkt O to Ziemia, mała w porównaniu z kosmosem.

Podobny krok można uczynić i dla planet. Pojawia się tu wszakże komplikacja: otóż zazwyczaj poruszają się one z zachodu na wschód względem gwiazd, lecz od czasu do czasu zawracają na jakiś czas i w efekcie zakreślają na niebie pętlę albo zygzak.

Eudoksos wpadł na pomysł, jak taki ruch wsteczny, jak nazywają go astronomowie, dodać do „zwykłego” ruchu prostego. Potrzebne są dwie dodatkowe sfery poruszające się z taką samą prędkością kątową, lecz niemal przeciwnie. Tzn. gdyby osie obrotu obu tych sfer się pokrywały, oba obroty znosiłyby się wzajemnie. Gdy jednak osie te będą nachylone do siebie pod pewnym kątem, punkt na sferze – nasza planeta – zakreśli leżącą ósemkę, znak podobny do \infty. Mamy więc pewien ruch średni plus zakreślanie ósemki, którą starożytni nazywali hippopede – pęta końskie. Pętlę tego rodzaju zakładano koniom, aby nie oddaliły się samowolnie z miejsca parkowania.

Jako znakomity matematyk Eudoksos z pewnością potrafił udowodnić, że hippopede jest przecięciem sfery z wewnętrznie do niej stycznym walcem.

Możemy śmiało uznać, że tak narodziła się astronomia matematyczna, jak też i matematyczna fizyka, bo z czasem metody matematyki przeniknęły także do badań ziemskiej rzeczywistości. Eudoksos zainspirowany był naukami Platona, który sądził, że geometria ujmuje pewną rzeczywistość idealną, dostępną umysłowi i doskonalszą niż ta zmysłowa. Nie znamy reakcji Platona na pomysł Eudoksosa, znamy jednak reakcję jego ucznia Arystotelesa. Uznał on, że należy włączyć osiągnięcia Eudoksosa do wizji świata. Postąpił trochę tak, jak współczesny filozof, który zastanawia się nad sensem Wielkiego Wybuchu albo Standardowego Modelu Cząstek. Tę filozoficzną wersję modelu Eudoksosa znamy wszyscy jako zestaw koncentrycznych sfer: obraz panujący przez następne dwa tysiące lat.

 

Rysunek z Cosmographii Petera Apiana z XVI wieku, a więc książki współczesnej Kopernikowi. Tutaj można obejrzeć większe obrazki. W średniowieczu dodano do tego obrazka dodatkowe sfery: wody firmamentu ponad gwiazdami (zgodnie z Biblią, gdzie wody znajdowały się ponad niebem, aby mógł padać deszcz), a także zlokalizowano niebo teologiczne jako obszar na zewnątrz fizycznych sfer (Arystoteles sądził, że cały kosmos jest kulą i nie ma sensu mówić o obszarze na zewnątrz). U Apiana mamy: „Niebo empirejskie, siedzibę Boga oraz wszystkich zbawionych”.

W samej astronomii żywot hippopede i modelu kosmosu złożonego z koncentrycznych sfer był znacznie krótszy. Mimo całej błyskotliwości, hippopede nie wystarcza do opisania tego, co widzimy. Np. Mars jest wyraźnie znacznie jaśniejszy podczas ruchu wstecznego niż podczas ruchu prostego, co sugeruje zmiany odległości od Ziemi. Ponadto tory planet nie powtarzają się, więc nieuchronnie należy ten model skomplikować. Zrobili to Apoloniusz i Ptolemeusz. Najtrwalsza okazała się jednak idea matematycznego objaśnienia wszechświata. W tym sensie dzisiejsi badacze tacy, jak Roger Penrose czy Stephen Hawking, a wcześniej Johannes Kepler czy Isaac Newton, są kontynuatorami idei Eudoksosa, że za pomocą matematyki zrozumieć można wszechświat.

Na koniec przyjrzymy się geometrii modelu. Planeta obraca się najpierw o kąt \alpha od A do P_1 wokół osi z_1, a potem o taki sam kąt wokół osi z od P_1 do P.

Zrzutujmy ten ruch na płaszczyznę xy.

Otrzymujemy następującą sytuację: Okrąg, po którym porusza się P_1 zrzutowany na płaszczyznę xy jest elipsą. Punkt P'_1 możemy skonstruować jako rzut punktu P_0 na większym okręgu prostopadle do osi x na tę elipsę.  Trójkąt QP_1'P_0 jest prostokątny i obrót o kąt \alpha wokół osi z przeprowadza go w trójkąt RP'A. Punkt P' leży więc na okręgu przechodzącym przez punkty R,P',A, a kąt P'HA jest jako kąt środkowy równy 2\alpha. Ponieważ P' jest rzutem P na płaszczyznę xy, więc P leży na powierzchni bocznej walca o promieniu HA. Punkt P leży też oczywiście na sferze.

Joseph Louis Lagrange i „wektor Laplace’a-Rungego-Lenza” (1781)

Pisałem kiedyś o zasadzie Arnolda: „Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy”. Przykładem może tu być tzw. wektor Rungego-Lenza, niemal odkryty przez Jakoba Hermanna, a na pewno odkryty przez Josepha Lagrange’a.

Joseph Louis Lagrange jest mało znany poza kręgiem profesjonalnych matematyków i fizyków. Wiele jego dokonań weszło do języka nauki i stała się dobrem powszechnym, funkcjonującym często bezimiennie. Urodzony w Turynie jako Giuseppe Luigi Lagrangia, poddany królestwa Sardynii, syn urzędnika królewskiego francuskiego pochodzenia, odkrył w sobie talent matematyczny jako nastolatek-samouk. Ojciec stracił fortunę w ryzykownych spekulacjach i syn potrzebował płatnego zajęcia. Pod koniec życia uczony twierdził, że gdyby nie potrzeba zarabiania, pewne nie zostałby matematykiem. Zapewne przesadzał. Talent tej wielkości nie daje chyba możliwości wyboru. W każdym razie młody Lagrange zadziwił Leonharda Eulera, z którym zaczął korespondować na temat rachunku wariacyjnego. W wieku dziewiętnastu lat został też mianowany sostituto – „zastępcą” profesora matematyki w szkole artyleryjskiej w Turynie. Uczył tam młodzieńców starszych od siebie, artyleria była uczonym rodzajem wojsk – to ze szkoły artylerii Napoleon Bonaparte wyniósł swój szacunek do przedmiotów ścisłych. Niezbyt przedsiębiorczy i cichy Lagrange spędził w Turynie wiele lat. Dopiero w wieku trzydziestu lat dzięki protekcji Jeana d’Alemberta został powołany do Akademii Nauk w Berlinie w miejsce Eulera, który wolał carową Katarzynę II od Fryderyka II pruskiego. Piemontczyk spędził w Prusach dwie dekady, narzekając na chłody i pisząc wciąż nowe ważne prace. W Berlinie powstało jego największe dzieło Méchanique analitique (sic!), opublikowane w dwóch tomach już w Paryżu, gdzie spędził resztę życia. Tam podczas Rewolucji zajmował się wprowadzeniem metrycznego systemu miar oraz nowego kalendarza i nowego podziału doby. Metr zdefiniowano wtedy jako jedną czterdziestomilionową część południka paryskiego, lecz babiloński, sześćdziesiątkowy podział godzin i minut okazał się zbyt głęboko zakorzeniony i tutaj zmiany się nie przyjęły. Został też Lagrange pierwszym profesorem analizy w École polytechnique, elitarnej i bardzo nowoczesnej na swe czasy szkole wyższej, modelu dla licznych politechnik na całym świecie.

Książka Lagrange’a była, niemal równo sto lat po Zasadach matematycznych Isaaca Newtona, podsumowaniem dorobku Newtonowskiej mechaniki za pomocą metod analitycznych spod znaku Leibniza, Bernoullich i Eulera.

W książce tej nie znajdzie Czytelnik żadnych rysunków. Metody, jakie w niej wykładam, nie wymagają żadnych konstrukcji ani rozumowań geometrycznych bądź mechanicznych, lecz jedynie operacji algebraicznych poddanych regularnym i jednolitym procedurom. Ci, co kochają Analizę, z przyjemnością zobaczą, jak mechanika staje się jej kolejną gałęzią i będą mi wdzięczni za takie poszerzenie jej domeny.

Newton byłby zapewne wstrząśnięty lekturą dzieła Lagrange’a. Zwyciężyła w nim algebra, metody formalnego przekształcania równań. Algorytmy zwyciężyły z wyobraźnią, ponieważ do ich stosowania wystarczy trzymać się prostych reguł. W ten sposób druga zasada dynamiki stała się układem trzech (lub więcej, zależnie od problemu) równań różniczkowych. Zagadnienie trzech przyciągających się ciał – jeden z wielkich problemów epoki, wymaga dwunastu całkowań. Lagrange pokazał w jednej ze swych prac, jak z dwunastu potrzebnych całkowań, zostaje do wykonania tylko siedem. Osiągnięcia tego rodzaju musiały być elitarne, choć miały też szersze znaczenie. Wielkim problemem epoki ponewtonowskiej była stabilność Układu Słonecznego. Newton przypuszczał, że wzajemne przyciąganie planet doprowadzi z czasem do rozregulowania się kosmicznego zegara, co zresztą może leżeć w boskim planie stwórczym: jako gorliwy czytelnik i komentator Apokalipsy św. Jana traktował znaną nam postać świata jako przejściową, próbował nawet oszacować, kiedy nastąpi ponowne przyjście Chrystusa. Lagrange, a po nim Pierre Simon Laplace (obaj raczej indyferentni religijnie) podjęli zagadnienie stabilności Układu Słonecznego. Wyglądało na to, że system planetarny zmienia się jedynie okresowo i nie ma w nim jednokierunkowych zmian parametrów orbit takich, jak ich rozmiar czy mimośród – a zatem grawitacja nie musi prowadzić do katastrofy kosmicznej. Zagadnienie to okazało się zresztą bardziej skomplikowane, niż sądzili Lagrange i Laplace. Pokazał to pod koniec wieku XIX Henri Poincaré. W wieku XX zrozumiano, że w układach takich jak planetarne powszechnie występują zjawiska chaotyczne. Chaos nie jest jednak nieuchronny, niezbyt wielkie zaburzenia nie naruszają bowiem regularnego charakteru ruchu. Wielkim osiągnięciem dwudziestowiecznej mechaniki analitycznej jest teoria KAM, zwana tak od nazwisk jej twórców: Andrieja Kołmogorowa, Vladimira Arnolda (to jego nazwisko pojawia się w zasadzie Arnolda – sformułowanej oczywiście nie przez niego, lecz przez Michaela Berry’ego) i Jürgena Mosera.

Pokażemy, jak Lagrange wprowadził trzy stałe ruchu Keplerowskiego, które dziś nazywa się powszechnie wektorem (Laplace’a)-Rungego-Lenza. Było to w roku 1779, a dwa lata później zostało opublikowane w pracach Akademii Berlińskiej (w Oeuvres de Lagrange, t. 5, s. 127-133). Algebraiczne podejście Lagrange’a łatwo daje się uogólnić na przestrzeń n-wymiarową {\mathbb R}^n, dlatego tak je pokażemy, uwspółcześniając nieco zapis. Siła grawitacji jest odwrotnie proporcjonalna do kwadratu odległości od centrum, działa wzdłuż promienia wodzącego planety (wektor o współrzędnych x_i/r jest wektorem jednostkowym o kierunku promienia wodzącego). Przyspieszenie planety zapisane jako składowe kartezjańskie spełnia równania

\ddot{x}_i=-\dfrac{\mu x_i}{r^3},\,i=1\ldots n,

gdzie kropki oznaczają pochodne po czasie t, \mu jest iloczynem masy Słońca i stałej grawitacyjnej, a r=x_ix_i\equiv x_1^2+\ldots+x_n^2. Po powtarzających się wskaźnikach sumujemy – jest to konwencja sumacyjna Einsteina, którą uczony żartobliwie nazywał swoim największym odkryciem matematycznym (nigdy nie uważał się za matematyka, lecz za fizyka, któremu przyszło stosować nowe techniki matematyczne i który przychodził do matematyki z innej strony). Za czasów Lagrange’a i jeszcze długo później pisano po trzy równania dla współrzędnych x,y,z, co wydłużało (niepotrzebnie z naszego dzisiejszego punktu widzenia) prace. Sam zapis równań jako trzech składowych kartezjańskich nie był czymś oczywistym za życia Newtona, a więc nawet na początku XVIII wieku. Jakob Hermann uważał, iż wymaga to uzasadnienia.

Szukamy wyrażeń, kombinacji współrzędnych i prędkości, które pozostają stałe podczas ruchu (są to tzw. całki pierwsze). Znanym wyrażeniem tego rodzaju jest energia E będąca sumą energii kinetycznej i potencjalnej:

E=\dfrac{1}{2}\dot{x}_1^2-\dfrac{\mu}{r}.

Lagrange podał jeszcze inne całki ruchu Keplerowskiego (w istocie wystarczy, aby siła działająca ze strony centrum skierowana była radialnie, konkretna jej postać jest nieistotna):

L_{ij}=x_i\dot{x}_j-x_j\dot{x}_i.

Mamy tych całek tyle, ile możliwości wyboru dwóch różnych wskaźników spośród n, czyli {n\choose 2}=\frac{n(n-1}{2}. Naprawdę jest to Keplerowskie prawo pól w przebraniu, a właściwie prawo pól plus stwierdzenie, że ruch zachodzi w płaszczyźnie (to ostatnie bywa nazywane zerowym prawem Keplera, co jest o tyle słuszne historycznie, że od niego Johannes Kepler zaczął swoje badania – przyjął je jako założenie. Kopernik nie wiedział, że tory planet są płaskie!). Zawsze możemy wybrać współrzędne tak, żeby co najwyżej dwie były różne od zera podczas ruchu, np. x_1, x_2. W przypadku 3D trzy całki (L_{23},L_{31},L_{12}) zachowują się jak wektor, jest to wektor momentu pędu.

Trzecia grupa całek, odkryta przez Lagrange’a i właściwa tylko siłom grawitacji, daje się zapisać w postaci

\mu e_i=-\dfrac{\mu x_i}{r}+\dot{x}_j L_{ij},\,i=1 \ldots n.

Wartości e_i są stałe. Jest to wektor zwany powszechnie w literaturze wektorem Rungego-Lenza. Lepiej poinformowani piszą o wektorze Laplace’a-Rungego-Lenza. W istocie jest to wektor Lagrange’a, którego szczególny przypadek podał Jakob Hermann, o czym Lagrange zapewne nie wiedział. Nie interesował go zresztą fakt, że jest to wektor, ważne dla niego były trzy całki ruchu. Laplace zaczerpnął te całki z pracy Lagrange’a i spopularyzował je, umieszczając w słynnym traktacie o mechanice niebios: Traité de mécanique céleste. Laplace, który uczył się pracy naukowej, czytając Lagrange’a, nie zawsze był lojalny wobec starszego kolegi. Ten zaś był chyba zbyt dumny, aby stale jak kupiec podkreślać swoje zasługi, co czyniła większość uczonych, konkurujących między sobą o niewielką pulę płatnych posad. Całki Lagrange’a z dzieł Laplace’a czerpali później inni bądź też sami odkrywali je niezależnie, jak William Rowan Hamilton. Runge i Lenz trafili do historii przypadkiem, z lenistwa późniejszych autorów, zbyt zajętych bieżącą pracą, aby włożyć wysiłek w przypisy.

Zobaczmy jeszcze, jak z wektora Lagrange’a wynika kształt toru planety. Mnożąc obie strony ostatniego równania przez x_i i sumując po powtarzającym się wskaźniku i, otrzymujemy

r +e_i x_i=L^2, 

gdzie L^2= \frac{1}{2} L_{ij}L_{ij}.Jest to równanie stożkowej o mimośrodzie e=\sqrt{e_i e_i}.

Trzeba podkreślić, że dla Lagrange’a nie było to jakieś szczególne osiągnięcie, lecz jedynie punkt wyjścia do pracy nad bardziej skomplikowanym zagadnieniem, gdy do problemu Keplera dodamy jeszcze siłę zaburzającą, jak w rzeczywistym problemie ruchu planet przyciąganych nie tylko przez Słońce, ale także przez inne planety.

Pokażemy jeszcze powyższe wyniki w zapisie wektorowym. Mamy wówczas

{\bf \ddot{r}}=-\dfrac{\mu {\bf r}}{r^3}.

Moment pędu równa się

{\bf L = r\times\dot{r}},

a wektor Lagrange’a:

\mu {\bf e}=-\dfrac{\mu {\bf r}}{r}+{\bf \dot{r}\times L}.

Mnożąc obie strony skalarnie przez {\bf r}, otrzymamy

r+{\bf e\cdot r}=\dfrac{L^2}{\mu}.

Uwaga techniczna. Łatwo sprawdzić, że podane wielkości są całkami pierwszymi, trudniej było je oczywiście odgadnąć. Kluczem jest tutaj obliczenie pochodnej po czasie z wektora jednostkowego, co Lagrange robi pozornie bez powodu, to znaczy powód wyjaśnia się po chwili. Mamy bowiem

\dfrac{d}{dt}\left(\dfrac{x_i}{r}\right)=\dfrac{\dot{x}_i r-\dot{r} x_i}{r^2}=\dfrac{x_jL_{ji}}{r^3}.

Korzystamy z faktu, że r\dot{r}=x_i\dot{x}_i (jest to zróżniczkowane tw. Pitagorasa: r^2=\sum_i x^2_i). Postać wektorowa jest przejrzysta, lecz ograniczona do {\bf R}^3.

 

 

Problem Keplera: Planety poruszają się po okręgach

Jednym z najważnieszych wątków w historii nauk ścisłych było badanie ruchów planet. Starożytni i Kopernik starali się je przedstawić jako złożenie jednostajnych lub prawie ruchów po okręgach. Doskonała machina kosmosu powinna być swego rodzaju majstersztykiem, czyli działającym dowodem umiejętności Majstra, który ją stworzył. Johannes Kepler włączył do tych rozważań nową, barokową wizję świata i estetykę. W sfery niebieskie wpisane zostały elipsy, a kosmos stał się dynamiczny, dopuszczalne było teraz przyspieszanie i zwalnianie ruchu, geometria pożeniona została z fizyką. Dopiero jednak Isaac Newton podał matematyczne wyjaśnienie fizyki ruchu planet: działa na nie ze strony Słońca siła grawitacji odwrotnie proporcjonalna do kwadratu odległości. Wyjaśnił w ten sposób odkryte przez Keplera prawidłowości za pomocą siły, która w tajemniczy sposób oddziaływała poprzez próżnię. Można powiedzieć, że dalszy rozwój fizyki to dzieje przyzwyczajania się do prawa ciążenia Newtona. Okazało się one niezwykle precyzyjne i płodne, dopiero w 1915 r. Albert Einstein zaproponował lepszą, to znaczy bliższą obserwacjom teorię grawitacji.

Także spora część matematyki po Newtonie dotyczyła mechaniki niebios, czyli rozmaitych ruchów pod wpływem siły ciążenia. Problemem Keplera nazywają matematycy zagadnienie ruchu wokół nieruchomego centrum pod działaniem siły odwrotnie proporcjonalnej do kwadratu odległości. Jest to zerowe przybliżenie dla Układu Słonecznego: gdy pominiemy siły grawitacji pomiędzy planetami i innymi małymi ciałami tego Układu. Przyspieszenie planety \vec{a} jest równe

\vec{a}=-\dfrac{\vec{r}}{r^3},

gdzie \vec{r} jest zależnym od czasu położeniem i pominęliśmy nieistotne dla matematyka stałe. Oczywiście rozwiązania tego równania są doskonale znane. Jak się jednak okazuje, wciąż można coś nowego na ich temat powiedzieć. Korzystamy tu z pracy Jespera Göranssona z roku 2015, na którą zwrócił uwagę John Baez. Rzecz jest tym bardziej interesująca przez to, że Göransson nie jest chyba akademickim uczonym, lecz amatorem w ściśle etymologicznym znaczeniu słowa, czyli miłośnikiem (nie mylić z amatorszczyzną, którą można spotkać bez trudu i na uczelniach).

Rozwiązaniami problemu Keplera są ruchy po elipsach, parabolach bądź hiperbolach – zależnie od znaku całkowitej energii E (v jest prędkością cząstki):

E=\dfrac{v^2}{2}-\dfrac{1}{r}.

Zajmiemy się poniżej przypadkiem eliptycznym, gdy energia jest ujemna. Zamiast opisywać zależność położenia od czasu t wprowadzimy nową zmienną u, która spełnia równanie

\dfrac{dt}{du}=r.

Wszystkie orbity elipityczne mają u nas okres 2\pi, zarówno gdy używamy czasu t, jak i przy użyciu „czasu” u. Gdy planeta jest bliżej centrum u biegnie szybciej. Możemy ruch planety opisać podając czterowymiarowy wektor (t,\vec{r}). Oznaczmy prędkości mierzone wzgledem nowego czasu primami. Równanie energii przybiera postać

(x')^2+(y')^2+(z')^2+(t'-1)^2=1.

Koniec wektora czterowymiarowej prędkości (t',\vec{r'}) leży na sferze S^3 o środku (1,0,0,0). Narysowaliśmy sferę S^2, pomijając zmienną z'. Okazuje się, że możliwe ruchy naszego punktu są kołami wielkimi w S^3, tzn. kołami o promieniu 1. Koła wielkie są najkrótszymi drogami łączącymi punkty na sferze, z tego powodu wybierają je samoloty na długich trasach – dlatego np. lecąc z Londynu do Seattle, przelatujemy nad Grenlandią. Kiedy się spojrzy na globus, widać, że to ma sens. A więc wszystkie ruchy w problemie Keplera odpowiadają kołom wielkim w przestrzeni prędkości i odbywają się ze stałą jednostkową prędkością. Inaczej mówiąc, „czas” u jest kątem mierzonym ze środka sfery. Narysowaliśmy jedno z takich kół wielkich, nachylone pod kątem \alpha do równika. Gdy kąt \alpha=0, planeta zakreśli okrąg w płaszczyźnie xy. Gdy kąt \alpha=\frac{\pi}{2}, planeta będzie się poruszać wzdłuż osi x, to także jeden z możliwych ruchów: spadanie wprost na centrum. Mówiliśmy o obrotach w płaszczyźnie ty. W czterowymiarowej przestrzeni mamy sześć możliwych płaszczyzn i dowolny obrót czterowymiarowy przeprowadza koło wielkie w jakieś inne koło wielkie. Ruchy planety mają więc symetrię czterowymiarowej grupy obrotów SO(4). Możemy więc powiedzieć, że planeta zawsze porusza się jednostajnie po okręgu na sferze S^3, a elipsy, które obserwujemy, wynikają z rzutowania czterowymiarowej czasoprzestrzeni na przestrzeń trójwymiarową. Wektor prędkości (x',y',z') zakreśla elipsę wynikającą wprost z rzutowania.

Łatwo pokazać, że położenia planety leżą na elipsie o mimośrodzie e związanym z kątem \alpha związkiem

e=\sin\alpha.

Ta elipsa jest przesunięta o e tak, że początek układu (centrum siły, Słońce) jest w jej ognisku.

„Nowy czas” u jest w istocie znaną od czasów Keplera anomalią mimośrodową.

Jest to szczególna konstrukcja: gdy planeta P zakreśla elipsę, to punkt P', jej swoisty cień, zakreśla okrąg jednostkowy. Kąt u związany jest z fizycznym czasem t równaniem Keplera:

t=u-e\sin u.

Odległość planety od Słońca dana jest prostym równaniem oscylacyjnym:

r=1-e\cos u.

Fakt ten odkrył kiedyś Kepler podczas swej „wojny z Marsem”. Göransson pokazał też analogiczne konstrukcje dla energii dodatniej i zerowej. W pierwszym przypadku ruch odbywa się po hiperboloidzie z metryką Minkowskiego (grupą symetrii jest grupa Lorentza), w drugim po paraboloidzie (grupą symetrii są izometrie euklidesowe).

 

 

Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała. Opisywałem kiedyś rozwiązanie tego problemu podane w XIX wieku przez Williama Rowana Hamiltona.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=-\dfrac{r}{x}\;\Rightarrow\; a-cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

Le Verrier, Adams, Galle i d’Arrest: wspólne odkrycie Neptuna (1846)

W październiku 1846 roku Zygmunt Krasiński pisał do Delfiny Potockiej:

…w tych dniach odkryto i na oczy zobaczono tego planetę tak idealnie obrachowanego, tak matematycznie przepowiedzianego (…) przez pana du Verrier, młodego astronoma, który ze zboczeń Uranusa wyciągnął konieczność bytu takiego planety i obliczył jego wielkość i przestrzeń, gdzie go szukać, wskazał. (…) Niegdyś Kolumb tak Amerykę odkrył, wprzód wyproroczywszy ją.

Poeta całkiem precyzyjnie opisał to wydarzenie. Odkrycie nowej planety stało się ogromną sensacją, przy czym najbardziej zdumiewał fakt, że najpierw położenie planety na niebie wyliczono, a później wystarczyło niejako tylko spojrzeć w niebo, by ją dostrzec. 23 września 1846 Johann Gottfried Galle, asystent w Obserwatorium astronomicznym w Berlinie otrzymał list od swego młodego jeszcze, lecz szybko wybijającego się francuskiego kolegi Le Verriera. Znalazło się w nim przewidywane położenie nowej planety, która powinna być widoczna jako dość słaba, lecz dostrzegalna bez trudu przez teleskop gwiazda. W sprzyjających okolicznościach można by nawet dostrzec niewielką tarczę planety (3″ wg Le Verriera). Przypadkiem tego właśnie dnia dyrektor obserwatorium Johann Franz Encke obchodził swe pięćdziesiąte piąte urodziny i wydawał przyjęcie dla osób stojących towarzysko wyżej niż Galle, tak więc asystent mógł skorzystać z najlepszego dziewięciocalowego teleskopu i zająć się słabo rokującą przepowiednią (Encke ponoć niechętnie zgodził się na te poszukiwania). Gallemu towarzyszył w tej pracy student Heinrich Louis d’Arrest. Szczęśliwym trafem mieli do dyspozycji najnowszą mapę tego obszaru nieba sporządzoną przez Carla Bremikera w ich obserwatorium. Była to część wielkiego zespołowego przedsięwzięcia sporządzenia map ułatwiających poszukiwania komet i planetoid. Całość została podzielona na dwadzieścia cztery części, z czego trzy sporządził Bremiker (później miał on opracować jeszcze dwie). Mapa ta nie została jeszcze rozesłana do innych obserwatoriów. Galle przy teleskopie i d’Arrest nad mapą sprawdzali kolejne gwiazdy w przeszukiwanym obszarze, zaledwie po godzinie pracy, kwadrans po północy Galle dostrzegł gwiazdę, której nie było na mapie Bremikera. Następnej nocy stwierdzili, że gwiazdka ta nieco się przemieściła. Odkrycie nowej planety stało się faktem. Znajdowała się ona niecały stopień od położenia przewidywanego przez Le Verriera.

Mapa z zaznaczonymi obserwowanym (beobachtet) i obliczonym (berechnet) położeniem Neptuna. Planeta zmieściła się szczęśliwie w lewym dolnym rogu mapy Bremikera.

Praca Le Verriera w pewnym sensie nie była zaskakująca dla astronomów. Wiedziano bowiem od dawna, że położenia Urana odbiegają od wartości obliczonych. Planety poruszają się w pierwszym przybliżeniu po elipsach ze Słońcem w ognisku, dokładne jednak obliczenia wymagają uwzględnienia przyciągania grawitacyjnego (owe „zboczenia” u Krasińskiego) pozostałych planet. Uran odkryty został przypadkowo w roku 1781, ponieważ jednak astronomowie dawno mieli zwyczaj pieczołowitego gromadzenia wszelkich danych, udało się później znaleźć także obserwacje planety sprzed oficjalnego odkrycia. Dawało to spory zasób obserwacji, których nie udawało się pogodzić z wynikami obliczeń. Te frustrujące wyniki, uzyskane przez Alexisa Bouvarda, znane były społeczności uczonych. Wysuwano też niejednokrotnie hipotezę, iż źródłem rozbieżności jest planeta położona dalej od Słońca, problem jednak uważano za zbyt trudny matematycznie i rachunkowo, by go zadowalająco rozwiązać.

Odchylenia Urana od położeń obliczonych przez Bouvarda. Warto zwrócić uwagę na skalę wykresu: chodzi o sekundy kątowe. Dokładność obserwacji rzędu pojedynczych sekund kątowych i podobna dokładność obliczeń teoretycznych były już standardem w tym czasie. Odchylenia (résidus, czyli reszty pozostające po porównaniu z teorią) zmieniają się w sposób systematyczny, nie wyglądają więc na błędy obserwacji.

Powszechnie sądzono, że zagadnienie jest zbyt trudne, dopóki nie zajęli się nim, niezależnie od siebie i nie wiedząc o sobie, Urbain Le Verrier i Henry Couch Adams. Pierwszy z nich, ekspansywny i ambitny trzydziestolatek, porzucił chemię i w krótkim czasie stał się ważnym astronomem teoretycznym. Dla drugiego, znacznie młodszego i jeszcze bez żadnego dorobku naukowego, była to pierwsza poważna praca po ukończaniu studiów w Cambridge, gdzie zdobywał wprawdzie wszystkie nagrody matematyczne, lecz teraz chodziło o rzecz znacznie poważniejszą. Obaj uczeni przyjęli założenie o zbyt dużej odległości planety od Słońca, udało im się jednak tak dobrać parametry orbity i masę poszukiwanej planety, że rozbieżności między obserwacjami a teorią znacznie się zmniejszyły i dla obserwacji z pierwszego półwiecza XIX wieku były rzędu kilku sekund kątowych.

W sprawdzeniu przewidywań znacznie bardziej powiodło się Le Verrierowi. Jego praca była też bardziej kompletna, do lata 1846 roku opublikował już trzy artykuły poświęcone nowej planecie. Adams nie miał kontaktów miedzynarodowych, nie publikował na bieżąco swych wyników, a u swoich rodaków też nie zyskał zaufania. Niektórzy twierdzą, że Brytyjczyk obarczony był syndromem Aspergera, pewne jest, że nie umiał nikogo przekonać do swojej pracy i nie zabiegał o to zbyt energicznie. Astronom Królewski George Bidell Airy zareagował dopiero na trzecią pracę Le Verriera, wcześniej Adamsowi nie udało się z nim spotkać. Zabawnym szczegółem jest fakt, że James Challis, który na polecenie Airy’ego zaczął poszukiwania planety, katalogował gwiazdy w „podejrzanej” okolicy i przy okazji dwa razy zaobserwował Neptuna, nie widząc o tym. Odkładał opracowanie obserwacji na później, aż w końcu dowiedział się o odkryciu Gallego.

Orbity wynikające z obliczeń obu uczonych były zbyt duże, w konsekwencji przecenil oni znacznie masę Neptuna. W rzeczywistości był on bliżej Urana i miał mniejszą masę.

Siła przyciągająca Urana ze strony Neptuna (strzałki pełne) i jej przybliżenie u Le Verriera (strzałki przerywane). Rysunki z artykułu rocznicowego na stulecie odkrycia autorstwa André Danjona, Le centenaire de la découverte de Neptune, „Ciel et Terre”, t. 62 (1946), s. 369-383.

Odkrycie to zapoczątkowało wielką karierę Le Verriera, który z czasem został dyrektorem Obserwatorium w Paryżu, rządzącym despotycznie przez wiele lat. Adams, choć ceniony, pozostawał w cieniu, mimo że obaj wykonywali dość podobną pracę polegającą na szczegółowych obliczeniach teoretycznych opartych na prawie ciążenia. Obaj też, niezależnie, dotarli do granicy dokładności takiego programu naukowego. Adams opublikował w 1854 roku pracę, z której wynikało nieznaczne przyspieszenie ruchu Księżyca po orbicie z czasem (tzw. przyspieszenie wiekowe albo sekularne). Le Verrier zaś obliczył, że orbita Merkurego obraca się nieco szybciej niż powinna po uwzględnieniu przyciągania pozostałych planet. Efekt był drobny, równy 38″ na stulecie, lecz realny. Żądny jeszcze większej sławy uczony francuski postulował tym razem istnienie planety bliższej Słońca niż Merkury. Nadano jej nazwę Wulkan, lecz choć szukano jej długo, ostatecznie wyjaśniono tylko tyle, że takiej planety na pewno nie ma.

Oba drobne efekty znalezione przez Adamsa i Le Verriera okazały się prawdziwe. W pierwszym przypadku przyczyną jest nie przyspieszanie Księżyca, ale zwalnianie obrotu Ziemi wokół osi. Dodatkowy obrót orbity Merkurego (dziś przyjmuje się jego wartość równą 43″ na stulecie) wynika natomiast z ogólnej teorii względności i obliczenie tej wartości w listopadzie 1915 roku stało się przełomowym momentem naukowego życia Alberta Einsteina.

Galileo Galilei odkrywa nowe planety (styczeń 1610 r.)

Miarą odkrycia – w nauce i poza nią – jest zawsze wielkość niespodzianki, jaką sprawiło.

I byłem jak astronom, gdy olśnionym okiem

Nową w swym gospodarstwie planetę dostrzeże;

Albo zuchwały Cortez, kiedy orlim wzrokiem

Dojrzał z dala Pacyfik, a jego rycerze

To na siebie patrzyli w zdumieniu głębokim,

To na widzialne z góry Darienu wybrzeże.

Obu tych porównań użył John Keats, chcąc opisać niezwykłe wrażenie, jakie zrobiła na nim lektura Homera w przekładzie Chapmana. Pisząc na początku XIX wieku, wiedział o odkryciu Urana, a także czterech planetoid, uczeni w piśmie spierają się aż do dziś o stosowność drugiego porównania, bowiem słynny awanturnik, Hernán Cortés, nie miał nic wspólnego z odkryciem Przesmyku Panamskiego. Nie pownniśmy jednak traktować poetów niczym Wikipedii.

Największym naukowym szokiem XVII stulecia było odkrycie nieba teleskopowego: rzeźby powierzchni Księżyca (wedle szkolarzy miała ona być gładka jak szlifowana przez jubilera kula), tysięcy gwiazdek niewidzialnych gołym okiem (po co właściwie Bóg je stworzył?), plam na Słońcu (przecież, uczynione z eteru, powinno być niezmienne i świetliste), a także czterech satelitów Jowisza. Odkrycia te uczyniły w niewiele miesięcy ze starzejącego się profesora uniwersytetu w Padwie, florentyńczyka Galileo Galilei, europejską sławę.

Zdumienie współczesnych było tym większe, że teleskop był pierwszym z serii naukowych instrumentów pozwalających dostrzec rzeczy dotąd ukryte i niewidzialne. Dziś dobrze wiemy, że pełno jest wokół nas rozmaitych rodzajów niewidzialnego promieniowania i że czułe przyrządy mogą rejestrować światło tak słabe, iż niewidoczne dla oka. Świat przedgalileuszowy był taki, jaki jawi się zmysłom: skoro śnieg jest biały, to znaczy, że przysługuje mu taka barwa. Dla nas jest to kwestia odbijania pewnych długości fal i pochłaniania innych. Przedmioty nie są same z siebie białe ani twarde, ani pachnące – wszystko to są reakcje naszych zmysłów na pewne sygnały ze świata zewnętrznego.

W 1609 roku Galileusz dowiedział się o przyrządzie zbudowanym z soczewek i przybliżającym obrazy dalekich przedmiotów. Pierwsze instrumenty tego rodzaju skonstruowali rzemieślnicy w Holandii i wkrótce różni przedsiębiorczy jegomoście krążyli po Europie, starając się sprzedać korzystnie owe wynalazki. Galileusz także potrafił szlifować soczewki, różnił się wszakże od rzemieślników systematycznością podejścia i rozległością horyzontów. Dzięki pierwszej szybko zaczął budować coraz lepsze przyrządy, powiększające dwadzieścia, a nawet trzydzieści razy. Dzięki drugiej znalazł naukowe zastosowanie nowego wynalazku, umiał go też lepiej sprzedać niż owi wędrowni przekupnie. To, że wynalazek nie był jego autorstwa, nie miało tu żadnego znaczenia.

Sprzedał go zresztą dwa razy. Pierwszy raz senatowi Wenecji (do której należał uniwersytet w Padwie). Republika żyjąca z handlu i piractwa była zainteresowana przyrządem z daleka pozwalającym ustalić, jaki okręt zbliża się do nas. Galileusz przeprowadził nawet dla dostojników pokaz działania swego przyrządu z dzwonnicy San Marco. Widzieli przez niego nie tylko Lizza Fusina i Chioggię, ale nawet wieżę i kopuły bazyliki Santa Giustina w Padwie, w Murano zaś – ludzi wchodzących i wychodzących z kościoła San Giacomo. Sukces ten zaowocował listem Galileusza do doży z prośbą o podwyżkę. Otrzymał podwyżkę pensji do 1000 dukatów rocznie i gwarancję dożywotniego zatrudnienia. Jak się zdaje, uczony nie był w pełni zadowolony, może dlatego że władze zastrzegły się, iż dalszych podwyżek już nie będzie. Galileusz zaczął myśleć o powrocie do Florencji i do tego przydały się odkrycia teleskopowe, a przede wszystkim odkrycie księżyców Jowisza. Uczony zaproponował bowiem nazwać je gwiazdami medycejskimi, od nazwiska rodu panującego w jego mieście. Cztery gwiazdy miały odpowiadać czterem braciom. Ewentualnie mogły być nazwane cosmici – od panującego Kosmy Medyceusza. Przyjęta została pierwsza propozycja, uczony otrzymał we Florencji także 1000 dukatów rocznie, ale że dukaty florenckie zawierały siedem lirów, a nie pięć, jak weneckie, była to podwyżka o 40%. Co więcej, uwolnić się miał na zawsze od nauczania. Ceną było przyjęcie roli dworzanina, kogoś w rodzaju szczególnie cenionego błazna.

Rękopis Galileusza znajdujący się w Ann Arbor. U góry znajduje się szkic listu do doży z sierpnia 1609 roku, na dole kartki mamy zapis pierwszych obserwacji księżyców Jowisza w styczniu (gennaio) 1610, a także (w prawym dolnym rogu) szkice układu księżyców z góry.

W liście pisanym 7 stycznia 1610 roku uczony informuje, że planety wyglądają jak małe tarczki, gwiazdy natomiast nie zmieniają swego wyglądu. Ponieważ Jowisz widoczny był już w grudniu, kiedy Galileusz obserwował zmieniający się z nocy na noc, wraz z przesuwaniem cienia, krajobraz Księżyca, więc przypuszcza się, że tej nocy przyrząd Galileusza sprawował się lepiej – on sam pisze, że aby uzyskać ostrzejszy obraz, trzeba obiektyw przysłonić. Soczewki ówczesne były marnej jakości, zresztą gdyby nawet ich powierzchnie były idealnie sferyczne, wady optyczne takie, jak aberracja sferyczna i chromatyczna, ograniczały jakość obrazów. Ograniczenie się do promieni przyosiowych poprawiało sytuację, kosztem wielkości pola widzenia i jasności obrazu.

W tym samym liście uczony odnotowuje pewną osobliwość w pobliżu Jowisza znajdowały się trzy gwiazdki ułożone w jednej linii.

* * O *

(tutaj i poniżej rysunki z książki Galileusza zestawione są ze współczesnymi obliczeniami położeń czterech księżyców wg Jovian Moons Applet)

Nazajutrz sytuacja się zmieniła:

O * * *
Galileusz wywnioskował, że Jowisz przesunął się na wschód (na rysunku na lewo) względem gwiazdek. Było to o tyle dziwne, że powinien w tym okresie poruszać się na zachód. Uczony zapisał nawet, że planeta porusza się w przeciwnym kierunku, „niż przyjmują kalkulatorzy”. Może zdał sobie sprawę, że wyjaśnienie takie raczej jest niemożliwe: widoczne ruchy planet były w ogólnych zarysach prawidłowo opisane przez takich „kalkulatorów”, jak Ptolemusz czy Kopernik, i raczej nie należało tu oczekiwać niespodzianek. Następny wieczór był pochmurny, 10 stycznia natomiast sytuacja przedstawiała się następująco:

* * O
Uczony uznał, że najbardziej na zachód wysunięta gwiazdka została zasłonięta przez tarczę Jowisza. Nazajutrz, 11 stycznia, nadal było widać dwie gwiazdki na wschód od Jowisza:

* * O
Były one teraz bardzo blisko siebie, a bliższa planety była znacznie słabsza od drugiej, podczas gdy w poprzednie wieczory wszystkie trzy miały mniej więcej taką samą jasność. „Wydaje się stąd, że wokół Jowisza są trzy inne gwiazdy błędne, niewidziane przez nikogo aż do tej pory” (gwiazdy błędne, czyli ruchome – było to określenie planet, które przesuwają się na tle gwiazd). Dwa dni później Galileusz zaobserwował cztery gwiazdki obok Jowisza:

* O * * *


Stało się jasne, że odkrył coś naprawdę nowego: cztery planety krążące wokół Jowisza niczym Jowisz i reszta planet wokół Słońca. Postanowił swoje obserwacje jak najprędzej ogłosić drukiem, zdając sobie sprawę, że
odkrycie satelitów przez innych obserwatorów jest tylko kwestią czasu.

Książka, Sidereus Nuncius („Nuncjusz gwiezdny”), ukazała się w marcu, przynosząc Galileuszowi sławę i posadę we Florencji. Oznaczało to także zerwanie z Wenecjanami urażonymi takim traktowaniem. Niektórzy sądzą, że Galileusz zaczął już wtedy myśleć o propagowaniu kopernikanizmu. W każdym razie miniatura Układu Słonecznego: Jowisz i jego księżyce była dla niego silnym argumentem psychologicznym za heliocentryzmem.

Odkrycia teleskopowe mogły zostać dokonane przez każdego, ale to Galileusz potrafił szybko zbudować odpowiednie przyrządy. Jeszcze ważniejsze okazało się jego przygotowanie mentalne: już dawno sądził, że nauka arystotelesowska  nie odpowiada rzeczywistości, teraz dzięki swemu przyrządowi miał nowe i niespodziewane argumenty przeciwko tradycyjnemu obrazowi świata. Potrafił je elokwentnie przedstawić i opisać, patrzenie nie jest prostą i jednoznaczną czynnością. Dostrzegamy zawsze tylko to, do czego jesteśmy jakoś wcześniej przygotowani. Księżyce Jowisza w tym samym praktycznie czasie zaobserwował Simon Marius (proponował je nazwać „Gwiazdami Brandenburskimi” – miał innych patronów). Prawdopodobnie jednak dopiero po książce Galileusza zrozumiał on, co właściwie zobaczył, a mianowicie: księżyce krążące wokół innej planety. Marius nie interpretował swych obserwacji w duchu heliocentrycznym, po prostu uzupełnił tradycyjny ptolemeuszowy obraz świata o cztery nowe obiekty. W tym ujęciu zamiast wybuchu rewolucji mielibyśmy mokry kapiszon.

Newton na plaży, Einstein w bibliotece

Einstein miał w swoim gabinecie w Berlinie trzy portrety: Newtona, Faradaya i Maxwella. Była to, rzec można, historia fizyki w trzech portretach: ojca założyciela nowożytnej fizyki i dwóch uczonych, eksperymentatora i teoretyka, odpowiedzialnych za koncepcję pola elektromagnetycznego. Einstein zbudował na tej podstawie teorię pola grawitacyjnego jako krzywizny czasoprzestrzeni, a resztę życia poświęcił głównie na nieudane próby matematycznego ujednolicenia Maxwellowskiego elektromagnetyzmu z grawitacją – miała to być słynna Einheitliche Feldtheorie: jednolita teoria pola.

Nic dziwnego, że z perspektywy wieków pracę Newtona postrzegał Einstein jako swego rodzaju raj dzieciństwa. Pisał o nim:

Szczęśliwy Newton, szczęśliwe dzieciństwo nauki! Ten, kto znajdzie czas i spokój ducha, by przeczytać tę książkę [Optics], przeżyje jeszcze raz cudowne zdarzenia, których wielki Newton doświadczył w swych młodych latach. Natura była dla niego niczym otwarta księga, której litery odczytywał bez trudności. Koncepcje, których używał, by zredukować materię egzystencji do uporządkowanego ładu, zdawały się samorzutnie wypływać z samego doświadczenia, z pięknych eksperymentów, które ułożył po kolei jak zabawki i opisał z czułą dbałością o szczegóły. W jednej osobie złączył się tu eksperymentator, teoretyk, mechanik, a także, co nie najmniej ważne, artysta w sposobie wykładu.

Niewykluczone, że Einstein natrafił gdzieś na słynny cytat z Newtona:

Nie wiem, kim się wydaję dla świata, ale sam sobie wydawałem się jedynie chłopcem igrającym na brzegu morza, który zabawia się, znajdując od czasu do czasu gładszy kamyk albo muszlę ładniejszą od innych, podczas gdy wielki ocean prawdy leżał nieodkryty przede mną.

Ten obraz dziecka na plaży zupełnie nie pasuje do innych wypowiedzi Newtona. Nie mamy nawet pewności, czy uczony widział  kiedykolwiek morze. Jako dziecko żył od morza daleko, a potem mieszkając w Londynie, niewiele się poruszał i nigdy bez określonego celu. Zabawa na plaży nie mogła się więc odnosić do jego własnych wspomnień, jako stary kawaler nie brał też udziału w życiu wielopokoleniowej rodziny. Wypowiedź tę, pochodzącą ponoć z ostatnich lat życia uczonego, przekazał Andrew Michael Ramsey, który jednak przebywał w tym czasie we Francji, a do Anglii wrócił trzy lata po śmierci Newtona. Mógł ją oczywiście od kogoś usłyszeć i zapisać jako uderzającą, legenda Newtona była już wtedy bardzo żywa, więc z pewnością zwracano uwagę na wszystko, co mogło od niego pochodzić. Nie ma jednak żadnego innego źródła, które by przekazało taką bądź zbliżoną wypowiedź uczonego.

Nie sądzę też, aby Newton skłonny był porównywać swoją pracę do dziecinnej zabawy. Dla nas zabawa taka jest uczeniem się świata, przejawem kreatywności, którą dorośli często tracą z wiekiem, skłonni jesteśmy widzieć w dzieciństwie utracony raj. Inaczej w czasach Newtona, gdy starano się z dzieci uczynić miniaturowych dorosłych i do zachowania dzieci przykładano miary moralne i religijne dorosłego życia. Dzieciństwo służyło właściwie temu, by jak najszybciej z niego wyrosnąć, stając się świadomym i odpowiedzialnym członkiem wspólnoty społecznej i religijnej. Newton był człowiekiem surowo religijnym, purytaninem, który niechętnie patrzył na wszelkie marnowanie czasu i wszystko robił zawsze w jakimś „poważnym” celu. Porównanie do dziecięcej zabawy odbierałoby jego pracy naukowej znaczenie. Podobny obraz dziecka na plaży pojawia się u Johna Miltona, purytańskiego poety, w poemacie Raj odzyskany. Szatan jest w nim umysłem zgłębiającym książkowe mądrości i przeciwstawiony jest mu Jezus, który posiadł tę madrość, która jest najważniejsza. Jezus mówi tam do Szatana m.in.

Kto czyta nieustannie a w swoje czytania
Nie wprowadza rownego lub wyższego zdania
I nie ma DUCHA błądzi kto zaś z DUCHEM czyta
Nie potrzebuje Greka mieć za Erudyta
Słuchacz Pogańskich Nauk bez pomocy DUCHA
Musi grążnąć w ciemnościach choć Doktorów słucha
Niepewny zawsze traci prac swoich pożytki
Głęboko biegły w książkach a sam w sobie płytki
Dowcip otruty jadem lub niedowarzony
Co fraszki lub świecidła zbiera z każdey strony
Warte gębki on je ma za godne Krytyki
Jak dziecko zbierające na piaskach krzemyki.

[przeł. Jacek Przybylski, Kraków 1792]

Książkowe mądrości warte są gąbki – tzn. dziś byśmy powiedzieli warte są wciśnięcia klawisza Delete (na tabliczkach do pisania stosowano gąbkę do ścierania treści, stąd tabula rasa – czysta tabliczka u Johna Locke’a, współczesnego Newtonowi). Nie wiemy, czy Newton czytał Miltona, mógł go przeglądać z powodu bliskości religijnej, choć wiemy, że uczony za poezją nie przepadał, a może lepiej powiedzieć: nie miał do poezji słuchu i wyobraźni. Isaac Newton nie lubił metafor, starał się przekształcić symbole w jakieś konkrety, jak u czytanych przez siebie alchemików. Użycie takiego miltonowskiego porównania byłoby oznaką dystansu starego uczonego wobec zajęć swej młodości i wieku średniego, psychologicznie wydaje się jednak niewiarygodne.

Swe zajęcia traktował Newton raczej jako obcowanie ze Stwórcą niż igraszkę. W tym punkcie spotykał się z Einsteinem, którego stosunek do religii instytucjonalnych był niezbyt przychylny, choć nie uważał się także za ateistę. W roku 1929 na pytanie „Czy wierzy pan w Boga?” odpowiedział:

Nie jestem w każdym razie ateistą. Ale to kwestia nie na nasz ograniczony rozum. Jesteśmy w sytuacji małego dziecka, które znalazło się w olbrzymiej bibliotece wypełnionej książkami w wielu językach. Dziecko wie, że ktoś je musiał napisać. Ale nie wie, jak, i nie zna języków, w których zostały spisane. Przeczuwa, że wszystkie te tomy ustawiono w jakimś porządku, ale nie ma pojęcia, w jakim. Taka też jest moim zdaniem sytuacja nawet najinteligentniejszych ludzi w obliczu Boga. Widzimy cudownie urządzony wszechświat, działający wedle pewnych zasad – tyle że bardzo słabo rozumiemy te zasady. (przeł. J. Skowroński)

Także ten obraz dziecka w niezrozumiałej bibliotece pochodzi tylko z jednego niezbyt wiarygodnego źródła. Jest nim występujący w roli dziennikarza George Sylvester Viereck, który przeprowadził wywiady z wieloma sławnymi ludźmi, np. z Freudem i Hitlerem. Viereck [„Czworokąt”] – nazwisko jak najbardziej odpowiednie dla kogoś, kto rozmawia z odkrywcą geometrycznej natury grawitacji, był nieślubnym wnukiem cesarza Wilhelma II i choć wychowywał się w Stanach Zjednoczonych czuł zawsze słabość do niemieckiego militaryzmu, co zaowocowało nawet kilkuletnią odsiadką w amerykańskim więzieniu.

 

 

Tablica Einsteina (Oksford, 16 maja 1931)

Niewiele jest rzeczy mniej trwałych niż treść zapisana kredą na tablicy. A jednak dziwacznym zrządzeniem losu tablica zapisana ręką Alberta Einsteina podczas wykładu w Oksfordzie zachowała się do dziś, stając się jednym z najchętniej oglądanych eksponatów miejscowego muzeum historii nauki. Jej treść odnosi się do modelu wszechświata przedstawionego wówczas przez uczonego. Einstein porzucił właśnie swój model świata statycznego i zgodnie z obserwacjami przyjął, że wszechświat się rozszerza. Galaktyki są, jak się żartobliwie wyraził, „światami, które oddalają się od nas z niewiarygodną prędkością, choć ich mieszkańcy nie znają nas w wystarczającym stopniu, by zachowanie takie wydawało się usprawiedliwione”.

Tablica przedstawia dwa równania opisujące zmiany promienia krzywizny wszechświata P, znalezione wcześniej przez Aleksandra Friedmanna (1a i 2a). Wielkość D, opisuje szybkość rozszerzania wszechświata i można ją znaleźć z obserwacji, co uczynił Edwin Hubble ( Vesto Slipher). Einstein znał osobiście amerykańskiego astronoma, lecz najwyraźniej nie widział w druku jego nazwiska i sądził, że pisze się je Hubbel. Na podstawie równań Friedmanna oszacował promień krzywizny wszechświata w latach świetlnych, jego gęstość \varrho w g/cm^3 oraz wiek t w latach. Wartość podana tu przez Einsteina przez czysty przypadek zgodna jest z obecnie przyjmowaną. Aby dojść do współczesnej kosmologii, trzeba było jeszcze wielu obserwacji, choć teoria była w zasadzie gotowa. W roku 1931 ów wiek wszechświata rzędu dziesięciu miliardów lat wydawał się zbyt krótki, sądzono bowiem, że gwiazdy świecą znacznie dłużej (wierzono wtedy, że cała masa gwiazdy z czasem zamienia się w promieniowanie, podczas gdy naprawdę jest to tylko około 1%, co skraca wiek gwiazd o dwa rzędy wielkości).

Tak więc treść tablicy jest dość przypadkowa i nie zawiera żadnego szczególnie istotnego odkrycia (a nawet zawiera pewne błędy rachunkowe, dość częste u Einsteina – nie byłby on dobrym księgowym). Zachowano ją, ponieważ uczony cieszył się wówczas ogromną sławą na całym świecie. Można powiedzieć, że był przeciwieństwem celebryty: jego osiągnięcia były jak najbardziej rzeczywiste i wcale nie pragnął być rozpoznawany na ulicy.

Zimę 1930/1931 spędził Einstein w Stanach Zjednoczonych, kwiecień – w Berlinie, potem na miesiąc pojechał do Oksfordu z cyklem wykładów Rhodesa. Jego częste podróże wiązały się w dużej mierze z atmosferą w Niemczech, gdzie narastał nacjonalizm i gdzie wciąż spotykały go jakieś przykrości. Opublikowana została np. książka zatytułowana Hundert Autoren gegen Einstein („Stu autorów przeciwko Einsteinowi”). Trzej redaktorzy dzieła skarżyli się tam na zmowę mediów głównego nurtu: „Można było dzięki temu zataić przed ogółem, że teorii względności bardzo wiele brakuje, aby stać się solidnym osiągnięciem nauki, a ostatnio dowiedziono za pomocą nieodpartych argumentów, iż jest ona kompleksem sprzecznych ze sobą twierdzeń, niemożliwych myślowo i intelektualnie zbędnych”. Einstein zauważył kostycznie, że gdyby nie miał racji, to wystarczyłby jeden autor. Książka taka niewątpliwie nigdy by się nie ukazała, gdyby autorem teorii względności był np. Max Planck, którego „niemieckość” była poza podejrzeniem. Wówczas sławiono by tę teorię jako wykwit śmiałego ducha germańskiego, zdolnego złączyć idealizm i doświadczenie. Owa setka autorów nie należała do elity akademickiej, lecz nie był to także żaden margines. Niemcy weszły już na drogę samozniszczenia, którą miały wytrwale podążać aż do 1945 roku. Teoria względności trwa niezagrożona, okazała się więc zresztą znacznie trwalsza niż Tysiącletnia Rzesza.

O przyjazd uczonego do Oksfordu zabiegał od dawna Frederick Lindemann, późniejszy ważny doradca Winstona Churchilla, kierownik Laboratorium Clarendona, który przed laty zrobił doktorat u Nernsta. Einsteina poznał podczas pierwszego Kongresu Solvaya w roku 1911 i od tamtej pory miał dla niego najwyższe uznanie. Lindemann przyjechał po swego gościa rolls royce’em, po drodze do Oksfordu wstąpili do szkoły w Winchester, jednej z najstarszych szkół w Anglii. Gość zwiedził budynki szkoły, w tym szatnię sportowców, gdzie przepocone stroje wisiały pod plakietkami upamiętniającymi różnych sławnych uczniów. „Ach, rozumiem – stwierdził uczony – duch zmarłych wstępuje w spodenki żywych”.

Einstein zamieszkał w Christ Church College, trochę narzekał na konieczność przebierania się w smoking do cowieczornego obiadu, ale zarówno Anglia, jak i Anglicy przypadli mu do gustu. Bywał na niezliczonych herbatkach i kolacjach, grał wielokrotnie w kwartecie albo kwintecie, spacerował po okolicy. Lindemann zadbał, aby gość miał towarzystwo mówiące po niemiecku.

Po jednym z trzech wykładów, jakie Einstein wygłosił w Oksfordzie, zdjęto ze ściany zapisaną przez niego tablicę, by zachować ją na pamiątkę. Uczony czuł się zażenowany takim przejawem kultu jednostki, ale zauważył także, iż niektórzy angielscy koledzy nie potrafli ukryć zazdrości w owym momencie. Nie byłby jednak sobą, gdyby do końca mieścił się w roli przypisanej mu przez okoliczności. Christ Church College był wyłącznie męski, nawet służbę stanowili mężczyźni. Za Einsteinem przyjechała do Oksfordu jedna z jego berlińskich adoratorek, trzydziestoletnia Ethel Michanowski. Uczony pisywał dla niej wiersze, np. taki liryk:

Smukła i delikatnie napięta,
Nic nie skryje się przed jej spojrzeniem.
Uśmiecha się na powitanie przyjaciół,
A jednak jest jak wierzba płacząca.

Wiersz ten nosi datę 16 maja 1931, a więc powstał podczas pobytu Einsteina w Oksfordzie. Ethel przysłała mu do Christ Church College jakiś kosztowny podarek, uczony gniewał się o to, i tak już skrępowany otaczającym go zbytkiem. W dodatku o wizycie Ethel dowiedziała się Elsa i zareagowała furią. Einstein przedłożył żonie następującą argumentację:

Twój gniew na panią M. jest całkowicie bezzasadny, gdyż zachowała się ona w całkowitej zgodzie z moralnością judeochrześcijańską. A oto dowód:
1. należy robić to, co sprawia nam przyjemność, a innym nie szkodzi;
2. nie powinno się robić tego, co nam nie sprawia przyjemności, a innych tylko irytuje. Dlatego też, zgodnie z punktem pierwszym, przyjechała do mnie, a zgodnie z punktem drugim nic ci o tym nie powiedziała. Czy takiemu zachowaniu można coś zarzucić?.

Chyba jednak przeczuwając, że nie przekona w ten sposób rozsierdzonej małżonki, Einstein napisał jednocześnie do Margot, córki Elsy i przyjaciółki Ethel, że sprawa zaczęła się nieco wymykać spod kontroli i byłoby lepiej dla obu zainteresowanych pań, gdyby o nich powszechnie nie plotkowano.

Wszechświat rozpatrywany wówczas przez Einsteina był sferą trójwymiarową (przestrzeń fizyczna byłaby więc skończonej objętości – podobnie jak skończone jest pole powierzchni dwuwymiarowej sfery). Na rysunku przedstawione są sfery dwuwymiarowe (czyli powierzchnie kulistego balonu, powierzchnia balonu jest tu całą przestrzenią). Rozszerzanie  analogiczne jest do nadmuchiwania balonu.

Zależność promienia wszechświata od czasu opisywana jest w takim modelu cykloidą. Nasz świat byłby na wznoszącym się łuku cykloidy. Przypadek promienia bliskiego zeru Einstein wykluczał, sądził, że jego model się tu nie stosuje. Nie sądził też, aby jakiś sens fizyczny miały kolejne łuki cykloidy.

 

Wstęp do sprawy Galileusza

Sprawa Galileusza była tyleż heroiczną, co bezskuteczną próbą zatrzymania czasu i naukowego postępu przez Kościół rzymski. Od czasu skazania Galileusza pojawił się wzór działania, powtarzający się aż do dziś: „nauki” Kościoła, interpretowane przez słabo zorientowanych w nauce teologów, utrzymywane jedynie siłą stojącej za nimi instytucji, wycofywały się stopniowo i chyłkiem z co bardziej oczywistych głupstw głoszonych jako prawdy objawione. Co nie znaczy, że działo się to szybko. Jak zauważył kiedyś Albert Camus: „Książki Kopernika i Galileusza były na indeksie do 1822 roku. Trzy wieki uporu to już kokieteria” (przeł. J. Guze).

Odkrycia dokonywane w XVII wieku w astronomii i fizyce prowadziły do obrazu świata coraz bardziej oddalonego od potocznych wyobrażeń, a więc także i od zdroworozsądkowej u swego korzenia filozofii Arystotelesa oraz od literalnego rozumienia tekstu Pisma Świętego. Teoria Kopernika była jednym z pierwszych przykładów, gdy nauka głosiła tezę sprzeczną z naszym bezpośrednim doświadczeniem. Zamęt poznawczy jeszcze bardziej pogłębiły teleskopowe odkrycia Galileusza na niebie. Już sam fakt, że istnieją obiekty niepostrzegalne gołym okiem, stanowił duży wstrząs dla współczesnych. Sam uczony pod wpływem tych odkryć zaczął coraz śmielej głosić kopernikanizm, uznając, że potrafi nie tylko udowodnić fałszywość fizyki arystotelesowskiej, ale także wykazać naukowo ruch Ziemi.

Galileusz zajął się teologią z konieczności, ponieważ został zadenuncjowany jako heretyk i stał się celem niewybrednych ataków ze strony dominikanów z Florencji. Najważniejszy z jego tekstów teologicznych, List do Wielkiej Księżny Krystyny (1615), pochodzi z okresu, gdy uczony wciąż jeszcze miał nadzieję, że Kościół katolicki nie opowie się oficjalnie przeciwko nauce kopernikańskiej. Wymagało to jednak odstąpienia od dosłownej interpretacji niektórych fragmentów Pisma Świętego. Galileusz przedstawił własną propozycję hermeneutyki Biblii, zwracając uwagę na fakt, że adresowana jest ona także do ludzi nieuczonych i posługuje się w tym celu językiem potocznym, nie można więc oczekiwać od tekstu Pisma objaśnień zjawisk przyrodniczych. Co więcej, przywołując tradycję dwóch ksiąg: księgi objawionej i księgi przyrody, stara się wykazać, że w razie pozornego konfliktu obu tych źródeł poznania, gdyby jakaś dobrze udowodniona prawda nauk przyrodniczych stała w sprzeczności z naszym zrozumieniem Pisma, należałoby zastanowić się nad zmianą interpretacji tekstu świętego. Podkreślić należy, że przynajmniej w ogólnych zarysach taki punkt widzenia nie był jakoś szczególnie oryginalny w XVII wieku. Przed Galileuszem zbliżone podejście hermeneutyczne głosił Johannes Kepler, później w podobnym duchu wypowiadali się niemal wszyscy przedstawiciele nowej nauki, nawet tacy fundamentaliści biblijni jak Isaac Newton. Jako przykład nowej interpretacji Biblii podaje Galileusz cud z Księgi Jozuego, gdy wedle tekstu Pisma Św. (Joz, 10, 13) słońce zatrzymało się na pewien czas. Otóż cud ten – zdaniem Galileusza – można zrozumieć naukowo, gdy przyjmiemy, że Słońce (znajdujące się pośrodku układu planetarnego) przestało obracać się wokół osi, co z kolei sprawiło, że także planety stanęły i cały kosmiczny zegar znieruchomiał, po czym znowu ruszył. Jak się wydaje, Galileusz zaczerpnął tu wiele ze wstępu do Astronomia nova (1609) Keplera, gdzie zaproponowany został taki właśnie mechanizm omawianego cudu (cudowne było zatrzymanie i ponowne uruchomienie Słońca, pozostałe zjawiska przebiegały w sposób naturalny).

Kościół katolicki wyjątkowo niechętnie patrzył na próby indywidualnej interpretacji Pisma, zwłaszcza podejmowane przez ludzi świeckich, nawet tak wybitnych jak Galileusz. Toteż różne zabiegi Galileusza, w tym jego kampania informacyjno-propagandowa prowadzona w Rzymie wśród najwyższego duchowieństwa, nie odniosły skutku. W roku 1616 nieruchomość Słońca uznano za sprzeczną z tekstem Pisma Św., a ruch Ziemi – za co najmniej błąd w wierze. Sam Galileusz został napomniany, by nie głosił poglądów kopernikańskich, choć dokładny sens tego napomnienia pozostaje wciąż niejasny – zachowały się na ten temat dwa nieco różne w treści dokumenty. Galileusz zrozumiał, że musi zamilknąć, choć poglądów kopernikańskich nie zmienił. Na razie uczonego nie spotkało nic złego. Do jego patronów w tym okresie należał m. in. kardynał Maffeo Barberini, który w 1620 r. napisał nawet na jego cześć wiersz pod tytułem Adulatio perniciosa („Zgubna pochwała”). Jak bardzo proroczy okazał się tytuł owego wiersza, miał się Galileusz przekonać, gdy Barberini został papieżem, przybierając imię Urbana VIII. Papież uważał się za intelektualistę i uczony uznał, że nadszedł sprzyjający czas na otwarte opowiedzenie się za ruchem Ziemi, ogłaszając w 1632 r. Dialog o dwu najważniejszych układach świata Ptolemeuszowym i Kopernikowym. Książka miała wprawdzie wszelkie możliwe zezwolenia władz kościelnych, lecz nie przypadła do gustu papieżowi. Rozpętała się burza, zakończona skazaniem Galileusza na dożywotni areszt domowy i całkowity zakaz publikacji. Musiał też publicznie podczas upokarzającej ceremonii wyrzec się swych poglądów.

Obraz z XIX wieku przedstawiający wyrzeczenie się poglądów przez Galileusza (Joseph-Nicolas Robert-Fleury). W rzeczywistości uczony wystąpił w worku pokutnym i musiał klęczeć, odczytując poniższy tekst:

Ja, Galileo, syn Vincenza Galilei z Florencji, w wieku lat moich 70, osobiście stanąwszy przed sądem, na klęczkach w obliczu waszym, najdostojniejsi i najwielebniejsi panowie kardynałowie, generalni inkwizytorzy w całej powszechności chrześcijańskiej przeciwko występkowi herezji, mając przed oczami moimi najświętszą Ewangelię, której dotykam własnymi rękami, przysięgam, że zawsze wierzyłem, obecnie wierzę i z pomocą bożą w przyszłości wierzyć będę w to wszystko, co utrzymuje, głosi i czego naucza św. Kościół katolicki i apostolski. Ponieważ jednak po tym, gdy to Święte Oficjum upomniało mnie i nakazało z mocą prawną, bym całkowicie porzucił fałszywe mniemanie, że Słońce jest środkiem świata i nie porusza się, a Ziemia nie jest środkiem świata i się porusza, i abym nie utrzymywał, nie bronił ani nie nauczał tej fałszywej doktryny, i po tym, gdy mi podano do wiadomości, że doktryna ta jest sprzeczna z Pismem Świętym, napisałem i ogłosiłem drukiem książkę, w której omawiam tę potępioną już doktrynę i na jej poparcie przytaczam bardzo przekonujące argumenty, nie dając żadnego rozwiązania – przeto uznany zostałem za mocno podejrzanego o herezję, a mianowicie, iż utrzymywałem i wierzyłem, że Słońce, nieruchome, jest środkiem świata (*), a Ziemia nie jest tym środkiem i się porusza.
Pragnę tedy z umysłów Waszych Eminencji i każdego prawego chrześcijanina usunąć to mocne podejrzenie, jakie słusznie wzbudziłem. (…) Przysięgam, że w przyszłości nigdy już nie będę głosił ani twierdził, słowem bądź pismem, niczego, co skłoniłoby do takiego podejrzenia. Jeślibym zaś poznał jakiegoś heretyka lub podejrzanego o herezję, doniosę o tym Świętemu Oficjum (…) Ja, Galileo Galilei, wyrzekam się, przysięgam, obiecuję i przyjmuję wszystko to, co wyżej przeczytałem, i na przypieczętowanie tego własnoręcznie podpisuję niniejszy dokument, który odczytałem słowo po słowie w Rzymie, w klasztorze Santa Maria sopra Minerva, dzisiaj, w dniu 22 czerwca 1633 roku.
Ja, Galileo Galilei, wyrzekłem się, jak wyżej, i własnoręcznie podpisuję.

Sprawa Galileusza jest oczywiście w jakiejś mierze konfliktem intelektualnym, starciem idei. Rozstrzygała się kwestia nowego podejścia do interpretacji Pisma Św. Kościół instytucjonalny nie miał jednak cienia wątpliwości, że filozofia nadal powinna być służką tradycyjnie rozumianej teologii. Galileusz i jego zwolennicy (często także duchowni) nie zostali wysłuchani – linia podziału biegła tu zresztą nie tyle między Kościołem a nauką, co raczej między zwolennikami nowych idei a ich przeciwnikami. Ostateczne decyzje zarówno w roku 1616, jak i w roku 1633 zapadły bez głębszego rozważenia tez Galileusza. W tym drugim przypadku sprawdzano tylko, czy można znaleźć w książce podstawy do oskarżenia jej autora. Bardzo możliwe, że jakąś rolę odegrał tu gniew Urbana VIII, który poczuł się urażony widząc własne słowa włożone w usta Simplicia – niezbyt rozgarniętego uczestnika Galileuszowego Dialogu. Cała sprawa Galileusza stała się głośnym przykładem użycia (czy też nadużycia) władzy doczesnej Kościoła katolickiego do cenzurowania treści teorii naukowej. Nie ma w tym kontekście znaczenia, czy Galileusz miał mocne dowody naukowe przemawiające za ruchem Ziemi – bardzo rzadko uczony może przedstawić takie dowody już w chwili publikacji swej teorii.

Przemiana światopoglądowa związana z rewolucją naukową była już wówczas w toku i żadne zakazy nie mogły tego odwrócić. Jednak tak ostry konflikt nie był nieuchronny. W tym konkretnym przypadku rolę odegrały zapewne cechy osobiste uczonego, który miał temperament zjadliwego polemisty, a także szersze uwarunkowania, jak osłabiona pozycja polityczna papieża i potrydencka mentalność oblężonej twierdzy.

Nie wszędzie dopasowanie prawd naukowych i prawd religijnych dokonywało się w sposób administracyjny, jak w Rzymie. W krajach protestanckich nie było żadnego odpowiednika sprawy Galileusza. W roku 1638 John Wilkins opublikował w Londynie książkę The Discovery of A World in the Moone, w której głosił kopernikanizm zbliżony do poglądów Galileusza. Wilkinsa nie tylko nie spotkały z powodu książki żadne represje, ale pod koniec życia został biskupem Kościoła anglikańskiego i jednym z założycieli Towarzystwa Królewskiego.

Konsekwencje sprawy Galileusza dla dalszego rozwoju nauki były stosunkowo niewielkie, m. in. dlatego, że niebawem znaczenie zyskały kraje północne, przede wszystkim Francja, Holandia i Anglia, gdzie cenzura kościelna miała wpływ niewielki albo żaden. Kartezjusz wolał jednak na wszelki wypadek mieszkać w Holandii i wstrzymał się z ogłoszeniem gotowego w roku 1633 Świata albo traktatu o świetle. Kartezjusz, podobnie jak Galileusz, był szczerym katolikiem i z wielu powodów nie chciał konfliktu ze swym kościołem.

Wstyd Kościoła pozostał do dziś. Jeszcze pod koniec XX wieku, kiedy podjęto na wniosek Jana Pawła II badania nad sprawą Galileusza, strona kościelna starała się zrzucić z siebie winę, przyznając jedynie, że uczony „wiele wycierpiał
(…) ze strony ludzi i instytucji Kościoła”, dodając zarazem jednym tchem, że to Galileusz błędnie rozumiał metodę naukową.

(*) Nb. Galileusz nie uważał, że Słońce jest środkiem świata, w ogóle nie wierzył, aby istniał jakiś środek świata, ale z pozycji klęcznej trudno było zaczynać na ten temat dyskusję.

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (1/2)

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (2/2)