Grawitacja: Newton na ramionach Hooke’a? (1679-1680) (2/2)

Newton zastał list Hooke’a po powrocie do Cambridge. Ostatnie pół roku spędził w swych stronach rodzinnych w Lincolnshire: w czerwcu zmarła jego matka, potem porządkował różne sprawy spadkowe. W odpowiedzi napisał Hooke’owi, że nie zajmuje się prawie wcale „filozofią” (czyli naukami ścisłymi): „moje upodobanie do filozofii wygasło i obchodzi mnie ona równie mało, jak kupca obchodzą cudze interesy albo wieśniaka – nauka”. Zapewne nie udawał, wprawdzie śmierć matki nie była dla niego takim wstrząsem, jak sądzili niektórzy biografowie, ale pochłonęły go sprawy praktyczne, a w poprzednich latach więcej się zajmował teologią i alchemią niż matematyką czy fizyką. Odkąd wyjaśniło się, że nie musi mieć święceń, by pozostać w Trinity College, żył trochę jak na obcej planecie, pochłonięty wyłącznie własnymi myślami i badaniami, które dotyczyły kwestii takich, jak pochodzenie dogmatu Trójcy św. (uważał go fałszerstwo historyczne św. Atanazego), sens Apokalipsy albo zrozumienie pewnych procesów (al)chemicznych. Zaproponował jednak Hooke’owi eksperyment mogący wykazać ruch obrotowy Ziemi. Wyobraźmy sobie ciało swobodnie spadające z pewnej wysokości nad Ziemią na równiku. Ponieważ prędkość ruchu wirowego na tej wysokości jest większa, niż na powierzchni, więc ciało powinno względem Ziemi odchylić się od pionu i spaść nieco na wschód (dziś mówimy o przyspieszeniu Coriolisa). Newton zamieścił rysunek krzywej zakreślonej przez takie ciało (względem obracającej się Ziemi).

Torem ciała jest ADE, z bliżej nieznanego powodu tor przedłużony został pod powierzchnią Ziemi.

Hooke zareagował, poprawiając rysunek Newtona. Otóż jego zdaniem tor wyglądałby następująco:

W istocie mamy tu dwa różne tory: zamknięty AFGHA (wariant bez oporu ośrodka) oraz spiralny AIKLMNOC (wariant z oporem ośrodka). Hooke wyobrażał sobie, że rozcinamy Ziemię na dwie połowy wzdłuż równika, a następnie obie połówki nieco rozsuwamy i pozwalamy ciału krążyć w tej wolnej przestrzeni. Jego modelem eksperymentalnym było wahadło stożkowe. Różnica między obrazkami Hooke’a i Newtona częściowo bierze się stąd, że tor u Hooke’a jest narysowany z nieobracającego się układu odniesienia – dlatego prędkość początkowa jest styczna do równika. Jak pokazał Derek Whiteside, oba tory są dość podobne (w wariancie z oporem ośrodka).

Z kolei zareagował Newton, przedstawiając tor, jaki jego zdaniem zakreśli ciało w przypadku, gdy grawitacja jest stała, niezależna od odległości od środka Ziemi (w układzie nieobracającym się).

Tor miał być krzywą niezamkniętą z kolejnymi apocentrami A, H i K tworzącymi kąt większy od kąta prostego. Szkic ten uzyskany został wykreślnie za pomocą metody, której Newton nie opisał. Stwierdził też, że gdy grawitacja rośnie wraz ze zbliżaniem się do środka, można otrzymać także spiralę.

Hooke sprawdził eksperymentalnie, jaki kształt toru otrzymamy w tym przypadku, obserwując kulkę krążącą po powierzchni odwróconego stożka: rzeczywiście tor ma kształt rozety. Stwierdził też, że krzywa z jego listu dotyczyła nie grawitacji niezależnej od odległości, ale rosnącej jak 1/r^2 (r jest odległością od Środka Ziemi C). Podkreślił przy tym, że w bardziej realistycznym przypadku ruchu wewnątrz Ziemi, grawitacja będzie raczej rosnąć wraz z odległością r, a nie spadać. Raz jeszcze zadał pytanie, jaką krzywą zakreśli ciało w przypadku takiej grawitacji i braku oporu ośrodka.

Na pytanie to nie doczekał się odpowiedzi. Chyba że za odpowiedź uznamy Matematyczne zasady filozofii przyrody. Odpowiedź ta była nieco spóźniona: Newton zajął się pracą nad swym arcydziełem dopiero od jesieni 1684 roku. W okresie między początkiem 1680 a 1684 spostrzegł, że pomysł Hooke’a ma sens, gdyż otrzymuje się w ten sposób elipsy Keplerowskie. Nie uważał tego spostrzeżenia za coś bardzo istotnego, być może najpierw potraktował je jako pewną matematyczną fantazję niekoniecznie odpowiadającą ściśle empirycznej prawdzie. Wymiana z Hookiem była cokolwiek abstrakcyjna i zaświatowa, przypominała kwestię rozważaną przez średniowiecznych filozofów: co się stanie, jeśli do tunelu przechodzącego przez Ziemię na wylot wrzucimy kamień? Czy kamień zatrzyma się w środku Ziemi, czy też może wróci do nas po takim czasie co Gagarin po okrążeniu Ziemi?

Gdy podczas pisania Matematycznych zasad doszły go słuchy, że Hooke rości sobie prawa do zależności 1/r^2, zdenerwował się na tyle że usunął z dzieła wzmianki dotyczące Hooke’a.

Cóż, Isaac Newton nie był wielkoduszny, nie chciał i nie potrafił negocjować społecznie w celu osiągnięcia kompromisu. Mógł być okaleczony psychicznie, matka zostawiła go w dzieciństwie z powodu nowego związku, bez wątpienia był niezwykle zamkniętym i żyjącym we własnym świecie człowiekiem. Zazdrośnie pilnował swoich zabawek.

Ale też zawdzięczał Hooke’owi dużo mniej, niż sądził tamten. Ponieważ Newton obsesyjnie zapisywał swoje rozważania, poprawiał je i przepisywał bez końca i zostawił mnóstwo rękopisów, wiemy sporo na temat jego naukowego rozwoju. Przed 1687 r. nie opublikował nic z mechaniki, bo nie zadał sobie trudu zebrania swych wyników, które były niebagatelne.

Jednym z najwcześniejszych, jeszcze z lat sześćdziesiątych, było obliczenie siły odśrodkowej (później opublikował zbliżone rozważania Christian Huygens). Pierwsze rozumowanie było bardzo proste: wyobraźmy sobie ciało odbijające się sprężyście od powierzchni bocznej walca w taki sposób, że jego tor jest wielokątem foremnym.

Kolejne zmiany pędu ciała są skierowane do centrum. Patrząc na rysunek z prawej strony, widzimy, że suma owych zmian pędu \Sigma \Delta p odpowiada długości wielokąta, gdy pęd jest promieniem okręgu opisanego na wielokącie. Wobec tego stosunek obu wielkości, gdy liczba boków rośnie nieograniczenie dąży do stosunku długości okręgu do jego promienia:

\dfrac{\Sigma \Delta p}{p}\rightarrow 2\pi.

Jest to inna postać wzoru na siłę dośrodkową F_{d} (mówiąc językiem współczesnym, ponewtonowskim):

F_{d}=\dfrac{\Sigma \Delta p}{T}=\dfrac{2\pi p}{T}=\omega p=\dfrac{mv^2}{R}.,

gdzie T,\omega,m,R są odpowiednio okresem, prędkością kątową, masą i promieniem okręgu.

Kilka lat później wyprowadził Newton tę zależność nieco inaczej. Zastosował ją też w połączeniu z III prawem Keplera, by wywnioskować, że siła odśrodkowa w ruchu planet wokół Słońca powinna być jak 1/r^2. Przeprowadził też test Księżycowy, który dał zły wynik z powodu błędnej wartości promienia Ziemi. To nie wszystko: rozwijając swoją metodę fluksji, znalazł wyrażenie na promień krzywizny, gdy znane jest równanie krzywej. Tor w kształcie rozety obliczył prawdopodobnie, wykorzystując wyrażenie dla siły dośrodkowej

F_d=\dfrac{mv^2}{\varrho}=F\sin\alpha,

skąd można obliczyć promień krzywizny, a następnie zbudować krzywą z kolejnych łuków okręgów krzywizny.

Najprawdopodobniej Hooke nie zrozumiałby tej metody, gdyby Newton mu ją przedstawił. W każdym razie daleko mu było do samodzielnego obliczenia kształtu toru w którymkolwiek przypadku.

Jak się zdaje, największym wkładem Hooke’a w odkrycie grawitacji był sam pomysł. Newton wrócił do niego na dobre dopiero w 1684 roku. Patrząc z dzisiejszego punktu widzenia, dziwimy się nieco: wszystkie składniki były już pod ręką, należało je tylko ułożyć we właściwy sposób. Od strony technicznej najważniejszym krokiem było dla Newtona spostrzeżenie, że siła skierowana ku centrum oznacza prawo pól. Wyobraził sobie, że siła działa impulsowo, w stałych odstępach czasu dodając pewien pęd zwrócony ku centrum. Wówczas pola zakreślane przez promień wodzący planety będą w każdym odcinku czasu jednakowe.

Dzięki temu twierdzeniu Newton nie tylko zrozumiał, jaki jest głębszy sens prawa pól Keplera, ale także uzyskał narzędzie pozwalające wprowadzić do geometrii ruchu czas. Należało po prostu wyrażać czas przez pola zakreślane przez poruszające się ciało. Twierdzenie to znalazło się na początku Matematycznych zasad. Niewykluczone też, że Newton przyglądał się różnym ruchom, korzystając z takiej konstrukcji. W taki właśnie sposób oblicza się tory cząstek za pomocą komputerów – możemy dziś oczywiście wykonać znacznie więcej kroków, co oznacza, że możemy wybrać odpowiednio mały krok czasowy.

Orbity ciała w stałym co do wartości polu, a więc odpowiadające przybliżonym wynikom Newtona uzyskanym z promienia krzywizny.

Już w trakcie wymiany listów z Hookiem zauważył Newton prawdopodobnie, że dla siły zmieniającej się jak 1/r^3 torem jest spirala.

W roku 1684 wiedział już, że torem w przypadku siły 1/r^2 rzeczywiście jest Keplerowska elipsa albo inna krzywa stożkowa, jak podejrzewał Robert Hooke. Metoda matematyczna zastosowana przez Newtona nie była jednak rachunkiem różniczkowym i całkowym w znanej nam postaci, lecz przeniesieniem pojęć granicy na geometrię syntetyczną. Wyglądało to np. tak.

Pokażemy jeszcze, jak promień krzywizny wraz z prawem pól pozwala rozwiązać zagadnienie ruchu w polu sił centralnych (tak ostatcznie przyjęło się nazywać siły skierowane wzdłuż promienia wodzącego, przyciągające bądź odpychające).

Rysunek przedstawia realizację idei Hooke’a: ruch prostoliniowy wzdłuż stycznej PR składamy ze spadaniem wzdłuż promienia wodzącego o wektor RQ=PQ’. Kąt d\phi jest infinitezymalny.

QR=\dfrac{F dt^2}{2},

gdzie dt jest odstępem czasu i masa równa jest 1, czyli siła = przyspieszenie). Pole wycinka SQP jest proporcjonalne do czasu hdt/2 (h jest stałą proporcjonalności). Przybliżając to pole polem trójkąta SQP, otrzymujemy

F={\displaystyle \lim_{dt\rightarrow 0}}\,\dfrac{2 h^2 QR}{SP^2\times QT^2}.

Rozwijając r(\phi+d\phi) w szereg Taylora do wyrazów kwadratowych w d\phi oraz obliczając z taką dokładnością ST i Q’T otrzymujemy

F=\dfrac{h^2}{r^2}\left(\dfrac{1}{r}+\dfrac{d^2}{d\phi^2}\dfrac{1}{r}\right).

W przypadku siły zależnej od odległości jak k/r^2 nawias musi być stałą niezależną od r, co oznacza, że

\dfrac{1}{r}=\cos\phi+\dfrac{k}{h^2}.

Jest to równanie stożkowej. Newton nie traktował tego w taki sposób, stosowanie algebry i symboli funkcji cosinus jest w tym kontekście anachronizmem, chodzi nam tu jednak o sens matematyczny operacji, a nie wierność historycznym formom zapisu.

Na koniec zauważmy, że ostatnie wyrażenie dla siły możemy porównać z wartością siły dośrodkowej. Otrzymamy w ten sposób wzór na krzywiznę krzywej we współrzędnych biegunowych

\varrho=\dfrac{1}{\sin^3\alpha}\left(\dfrac{1}{r}+\dfrac{d^2}{d\phi^2}\dfrac{1}{r}\right).

Otrzymał go Newton w latach siedemdziesiątych. Potem stopniowo oddalał się od zapisów algebraicznych, pisząc Matematyczne zasady nie stosował go wprost, ale z pewnością rozumiał sens geometryczny takich wyrażeń. Niestosowanie układów współrzędnych i rozbudowanej algebry było jego wyborem. We współczesnych podręcznikach pojawia się równanie toru zapisane przez drugą pochodną 1/r, zwykle nie zwraca się przy tym uwagi, że owe formalne manipulacje symbolami mają geometryczny sens krzywizny.

 

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s