Grawitacja: Newton na ramionach Hooke’a? (1679-1680) (1/2)

„Jeśli dalej sięgnąłem wzrokiem, to dlatego że stałem na ramionach olbrzymów” – pisałem jakiś czas temu o debacie, w której Newton użył tego określenia. Chodziło tam o optykę i profesor z Cambridge wyraził się z pewną retoryczną przesadą. Jeśli miał naukowy dług wdzięczności wobec Roberta Hooke’a, to raczej w kwestii grawitacji. Prawo ciążenia było największym osiągnięciem Newtona i zapewne największym odkryciem w dziejach nauki, epoka nowożytna – nasza epoka – zaczęła się właśnie wtedy, na dobre i złe. Hooke głosił ideę grawitacji poruszającej planety przed Newtonem, choć nie potrafił przekuć jej w matematyczne dowody. Myśl, że może komuś coś zawdzięczać, a w dodatku tym kimś ma być kłótliwy i namolny Robert Hooke, doprowadzała Newtona do białej gorączki.

Umiejętność stawania na ramionach poprzedników stanowi główną siłę naszego gatunku. Metaforę takiej wertykalnej sztafety pokoleń napotykamy nie tylko w tekstach, ale i w sztuce, np. na witrażach katedry w Chartres.

Tutaj Ewangeliści stoją (boso, z iście ewangeliczną prostotą, nie jak dzisiejsi biskupi) na ramionach tych proroków starotestamentowych, którzy mieli ich zapowiadać zgodnie ze średniowieczną teologią (Ezechiel św. Jana, Daniel – św. Marka itd). Idea postępu, rozwijania się w czasie wywodzi się zresztą z chrześcijaństwa, choć jej głównym przykładem stały się od XVII wieku nauka i technologia. O postępie społecznym, moralnym, politycznym – we wszystkich obszarach, gdzie ujawnia się tzw. natura ludzka – lepiej zamilczeć. Mamy, niestety, więcej z szympansów zwyczajnych niż z bonobo. Czy samcza agresja jest jakoś sprzężona z twórczością intelektualną? Widzimy, że małpy potrafiące posługiwać się iphonem i twitterem mogą stać się tym bardziej niebezpieczne dla przyszłości naszego gatunku.

Jednym z przejawów walki o status osobnika alfa są w nauce spory o priorytet odkrycia. Zdaniem Roberta K. Mertona, klasyka socjologii, chodzi też o coś więcej. Naukowe uznanie, ranga uczonego, jest nagrodą za oryginalność badań, a ta nie może być podrabiana. Wszyscy stoją więc na ramionach kolegów, ale kłócąc się zawzięcie o rozmiary własnej postaci na witrażu.

Gresham College i narożnik, w którym mieszkał Robert Hooke (9), na dachu widać daszek jego obserwatorium (8), w którym zamontował nieruchomy zenitalny teleskop do obserwacji paralaksy rocznej. Twierdził, że ją wykrył, wiemy, że to nieprawda. Efekt był mniejszy, niż wtedy sądzono, wcześniej wykryto aberrację światła.

Profesor geometrii w Gresham College w Londynie, Robert Hooke był uczonym wybitnym, niezwykle wszechstronnym, zorientowanym zarówno w literaturze naukowej, jak i w praktycznych osiągnięciach rzemieślników budujących zegary, teleskopy, przyrządy miernicze czy nawigacyjne. Zajmował się budową pomp próżniowych, doświadczeniami z gazem, obserwacjami mikroskopowymi, astronomią (odkrył czerwoną plamę na Jowiszu i usiłował zmierzyć paralaksę gwiazdy γ Draconis), urządzeniami mechanicznymi, dokonał ważnych obserwacji biologicznych i paleontologicznych, zbudował wychwyt kotwicowy – ważny element zegara sprężynowego, miał oryginalną teorię umysłu, a także, co ważne dla nas w tej chwili, głosił pomysł siły przyciągającej między Słońcem i planetami. Wychwyt kotwicowy zbudował też Christiaan Huygens, prawo ciążenia powszechnego sformułował Newton, który potrafił też przedstawić jego liczne zastosowania. W obu przypadkach Hooke usiłował bronić swojego priorytetu, jednak na próżno. Dziś tylko prawo sprężystości upamiętnia tego uczonego, tak ważnego dla Towarzystwa Królewskiego i dla Londynu, to on bowiem obok sir Christophera Wrena był jednym z głównych budowniczych stolicy po wielkim pożarze z 1666 roku. Obserwatorium w Greenwich, sławny Bedlam – szpital dla obłąkanych i wiele innych budowli to jego dzieło. Pomagał też przy niełatwej konstrukcji wielkiej kopuły katedry św. Pawła. Nie zachował się żaden jego portret (niektórzy widzą w tym fakcie przejaw mściwości Newtona, który po śmierci Hooke’a przewodniczył Towarzystwu Królewskiemu), poniżej zamieszczamy coś w rodzaju portretu pamięciowego, sporządzonego zgodnie z opisami powierzchowności uczonego.

`Oba portrety autorstwa Rity Greer, 2006

Próba nawiązania korespondencji z Newtonem w roku 1675 okazała się nieudana i zakończyła się na jednym liście profesora z Cambridge, tym zawierającym metaforę następców stojących na ramionach wielkich poprzedników. Pod koniec 1679 roku Hooke napisał znowu, miał pretekst formalny: został sekretarzem Towarzystwa Królewskiego i do jego obowiązków należała korespondencja w imieniu Towarzystwa. Zapewniał, iż osobiście nie czuje żadnej wrogości i chciał  się dowiedzieć, co Newton sądzi m.in. na temat jego hipotezy, że ruchy planet można uważać za wypadkową ruchu prostoliniowego i ruchu pod wpływem przyciągania w kierunku ciała centralnego. List nie zawiera rysunku, ale hipoteza wyglądałaby mniej więcej tak.

Wiadomo było od czasów Galileusza i Torricellego, że idealną (bez oporu ośrodka) krzywą balistyczną można było uzyskać w podobny sposób.

Mogłoby się wydawać, że jesteśmy już bardzo blisko prawa ciążenia: należy „tylko” ustalić, jak siła ciężkości zależy od odległości od ciała centralnego, a potem skonstruować krzywą według narysowanego przepisu. Ściśle biorąc, należało uważać wektory za nieskończenie małe: planeta nieco się przesuwa wzdłuż stycznej i jednocześnie spada. Matematyka niezbędna do znalezienia krzywej to rachunek różniczkowy i całkowy, odkryty i rozwinięty przez Newtona jeszcze w latach sześćdziesiątych i na początku siedemdziesiątych. Prace te nie były publikowane, mało kto o nich wiedział, a z pewnością nikt nie rozumiał ich głębi i znaczenia. Hooke mógł coś słyszeć o matematycznym geniuszu Newtona, ale z pewnością nie znał szczegółów. Sam był wprawdzie profesorem geometrii, lecz oznaczało to matematykę elementarną potrzebną mierniczym i nawigatorom, którzy uczyli się w Gresham College. Hooke swoje pomysły przedstawił w druku kilka lat wcześniej w postaci trzech założeń.

Pierwsze, że wszystkie ciała niebieskie obdarzone są mocą przyciągającą albo grawitacyjną w kierunku swego centrum, za pomocą której przyciągają nie tylko swoje własne części, nie pozwalając im odlecieć, jak
to obserwujemy na Ziemi, ale że przyciągają także wszystkie inne ciała niebieskie, które znajdują się w obrębie ich sfery aktywności, tak że nie tylko Słońce i Księżyc mają wpływ na ciało i ruchy Ziemi, a Ziemia na nie,
ale także Merkury, Wenus, Mars, Jowisz, Saturn mają dzięki swym mocom przyciągającym istotny wpływ na jej ruch, podobnie jak odpowiednia moc przyciągająca Ziemi ma duży wpływ na każdy z ich ruchów.

Drugie założenie mówi, że wszystkie ciała wprawione w prosty i prostoliniowy ruch będą kontynuować taki ruch po linii prostej, dopóki nie zostaną przez jakieś działające moce odchylone i zmuszone do ruchu po okręgu, elipsie albo jakiejś innej złożonej linii krzywej.

Założenie trzecie mówi, że te moce przyciągające są tym potężniejsze w działaniu, im bliżej ich środka znajdzie się ciało, na które działają. [An Attempt to prove the Motion of the Earth from Observations, London 1674, s. 27-28.]

Zanim przedstawimy reakcję Newtona, zróbmy rzut oka wstecz. W roku 1619 Johannes Kepler podsumował swoje rozumienie ruchów planetarnych, ilustruje je rysunek z Epitome astronomiae Copernicane („Skrót astronomii kopernikańskiej” – w istocie była to astronomia Keplerowska, tylko nieruchomość Słońca wiązała ją z Kopernikiem). Kepler był jednak uczonym wyjątkowo skromnym i tak oryginalnym, że nie potrzebował walczyć o swój priorytet, bowiem współcześni niezbyt rozumiejąc, czego dokonał, niezbyt mu też zazdrościli.

Mamy tu ruch planety po elipsie wokół Słońca w jednym z jej ognisk. Mechanika nieba, która za tym stała, była następująca. Po pierwsze, każde ciało obdarzone było siłą inercji i pozostawione samo sobie zatrzymywało się po chwili. To dynamika przesuwania ciężkiej szafy: pchamy – szafa się przesuwa, przestajemy pchać – szafa staje w miejscu. Dzięki tej zasadzie bezwładności można się było nie obawiać, że planety pospadają na Słońce. Do wytworzenia ich ruchu obiegowego służyła Keplerowi specjalna moc obracająca, rodzaj pola siłowego, którego źródłem było obracające się wokół osi Słońce (Kepler pierwszy upatrywał w Słońcu źródło siły poruszającej planety, dla Kopernika Słońce było po prostu rodzajem lampy centralnie umieszczonej w machinie świata). Im dalej od Słońca znajduje się planeta, tym mniejszą ma prędkość. Drugie prawo Keplera można zapisać jako v_{\perp}\sim 1/r, gdzie v_{\perp} to składowa prędkości prostopadła do promienia wodzącego r. Dziś fakt ten nazywamy zasadą zachowania momentu pędu. U Keplera odpowiadała za to siła. Ponieważ jednak planety poruszają się po ekscentrycznych elipsach, na przemian zbliżając się i oddalając od Słońca, więc potrzebna była druga jeszcze siła: magnetyczna. Magnetyzm znany był z dzieła Williama Gilberta (De magnete, 1600), lekarza królowej Elżbiety I, a więc dynastycznie jakby wczoraj. Wyjaśnił on działanie kompasu, o którym przedtem wypisywano różne magiczne głupstwa. W tym celu zbadał zachowanie igły magnetycznej w pobliżu magnesu o kształcie kulistym, będącego niczym mała Ziemia, terrella.

Magnetyzm ograniczony był jego zdaniem do pewnej sfery działania: orbis virtutis na rysunku. U Keplera mamy osobliwy mechanizm magnetyczny: planeta jest rodzajem igły zachowującej stale tę samą orientację przestrzenną, Słońce natomiast jest magnesem, którego jeden biegun jest na powierzchni, drugi zaś ukryty w centrum. Oczywiście nie ma w przyrodzie takich magnesów, podobnie zachowywałby się monopol magnetyczny. Całość tej konstrukcji Keplera sprawia trochę wrażenie barokowego gabinetu osobliwości, gdzie nazbierało się wiele różnych dziwnych urządzeń czy eksponatów. Musimy jednak pamiętać, że nie było jeszcze żadnej matematycznej dynamiki, a Kepler starał się powiązać ten mechanizm z bardzo precyzyjnym matematycznym opisem ruchu planet (trzy prawa Keplera). Jego matematyka była znakomita, mechanika natomiast musiała zostać stworzona na nowo.

W XVII wieku mechanika ziemska i niebieska szybko stawała się nauką. A jak to określił antropolog Max Gluckman, „nauką jest każda dyscyplina, w której głupiec obecnego pokolenia może sięgnąć dalej niż geniusz pokolenia minionego” (Politics, Law, and Ritual in Tribal Society, s. 32; chodziło tam zresztą o kurtuazyjną, lecz zdecydowaną krytykę naszego rodaka Bronisława Malinowskiego). Hooke nie był bynajmniej głupcem, ale stał już na ramionach wielu uczonych: Kartezjusza, Huygensa i całej plejady pomniejszych twórców Rewolucji naukowej. Czym górowała hipoteza Hooke’a? Jej założenie drugie było doskonalszą formą zasady bezwładności: nie tylko spoczynek, ale i ruch jednostajny prostoliniowy nie wymagał podtrzymywania. Aby była to prawda, trzeba było przyjąć, że opór ośrodka wypełniającego kosmos jest zaniedbywalny. Zasada ta pochodziła zresztą od Kartezjusza, choć u niego opór eteru niweczył stale tendencję do prostoliniowego, bezwładnego ruchu. Potrzebna była też tylko jedna siła, skierowana ku Słońcu. Wzajemne przyciąganie komplikowało zarazem problem: gdybyśmy musieli, jak w założeniu pierwszym Hooke’a, uwzględniać przyciąganie wszystkich pozostałych planet, wyjaśnienie ruchów w Układzie Słonecznym musiałoby poczekać aż do drugiej połowy wieku dwudziestego i wynalezienia komputerów. Na szczęście można ruch ten przedstawić jako przyciąganie przez jedno ciało centralne plus niewielkie poprawki wynikające z przyciągania innych obiektów.

Hooke zaproponował więc radykalne uproszczenie pojęciowe problemu ruchu planet – najważniejszego zagadnienia nauk ścisłych od starożytności. Nie wszystko pochodziło tu od niego, raczej przekształcił on idee krążące w londyńskim powietrzu, w dyskusjach uczonych takich, jak Christopher Wren czy Edmond Halley. Ów świeży powiew z Londynu ożywił zastałe powietrze Cambridge i stał się ważnym impulsem dla Newtona, o czym opowiemy w następnej części.

2 komentarze do “Grawitacja: Newton na ramionach Hooke’a? (1679-1680) (1/2)

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s