Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)

Reklamy

Skąd się bierze Maxwellowski rozkład prędkości cząsteczek w gazie doskonałym?

James Clerk Maxwell podał w roku 1859 postać rozkładu prawdopodobieństwa prędkości cząsteczek w gazie doskonałym. Okazuje się, że prawdopodobieństwo, iż np. x-owa składowa prędkości losowo wybranej cząsteczki należy do przedziału (x, x+dx) równe jest

p(x)dx=C\exp(-\alpha x^2)dx,

gdzie C jest stałą normalizacyjną (wybraną tak, aby prawdopodobieństwo zdarzenia pewnego było równe 1). Jest to słynny rozkład Gaussa, zwany też rozkladem normalnym, gdyż pojawia się on w najróżniejszych kontekstach.

Składowa x-owa prędkości danej cząsteczki zmienia się wskutek zderzeń z innymi cząsteczkami w sposób przypadkowy i w rezultacie opisywana jest takim rozkładem o kształcie dzwonu. Jeśli całkowita energia gazu jest stała, to stała jest także suma kwadratów wszystkich prędkości:

E=\dfrac{m{\vec{v}_1}\,^2}{2}+\ldots+\dfrac{m\vec{v}_N\,^2}{2}=const.

(m jest masą cząseczki gazu). Kwadrat każdego wektora jest sumą trzech kwadratów jego współrzędnych. Oznaczając więc wszystkie składowe wszystkich prędkości cząsteczek gazu jako x_1,x_2, \ldots, x_{3N}, mamy 3N-wymiarową przestrzeń prędkości. Warunek stałości energii przyjmuje postać:

x_1^2+x_2^2+\ldots+x_{3N}^2=R^2,

co geometrycznie oznacza, że koniec wektora prędkości Y=[x_1, x_2,\ldots, x_{3N}] leży na powierzchni sfery S^{3N-1} o promieniu R (sfera ma o jeden wymiar mniej niż przestrzeń).

Aby wyprowadzić rozkład Maxwella, przyjmijmy najprostsze założenie: każde położenie końca wektora Y na sferze jest jednakowo prawdopodobne.

Szukamy teraz rozkładu prawdopodobieństwa którejkolwiek pojedynczej składowej np. x\equiv x_1 (jest ona jednocześnie x-ową składową prędkości cząsteczki nr 1). W przypadku sfery S^2 możemy to narysować.

Prawdopodobieństwo, że x bedzie leżeć w cienkim pasie sfery zaznaczonym na rysunku jest proporcjonalne do pola powierzchni pasa sferycznego równej iloczynowi długości razy szerokość:

\Delta S=2\pi R\sin\vartheta \times R\Delta \vartheta.

Sumując pola powierzchni takich pasów, czyli całkując, otrzymamy wzór na pole powierzchni sfery S^2:

S_2(R)={\displaystyle \int_{0}^{\pi} 2\pi R^2 \sin\vartheta d\vartheta}=4\pi R^2.

Prawdopodobieństwo znalezienia końca wektora Y w pasie sferycznym byłoby w takim razie równe ilorazowi obu tych wielkości

p(\vartheta)\Delta\vartheta=\dfrac{2\pi R \sin\vartheta}{4\pi R^2}\times R\Delta\vartheta= \dfrac{S_1(R\sin\vartheta)}{S_2(R)} R\Delta \vartheta.

Szerokość naszego pasa jest zarazem „polem” sfery S^1, tzn. długością okręgu o promieniu R\sin\vartheta (co widać z rysunku). Dla trójwymiarowego wektora Y rozkład ten nie jest szczególnie interesujący. Fizycznie odpowiadałby jednocząstkowemu gazowi doskonałemu. Prędkość tej jednej jedynej cząsteczki przyjmuje z równym prawdopodbieństwem dowolny kierunek w przestrzeni. Długość wektora jest określona przez energię tej cząstki.

Ostatnie wyrażenie dla prawdopodobieństwa można zastosować równie dobrze w przestrzeni 3N-wymiarowej. Możemy zawsze ustalić wartość jednej ze współrzędnych x_1\equiv x. Pozostałe współrzędne spełniają wtedy warunek

x_2^2+x_3^2+\ldots+x_{3N}^2=R^2-x^2

i jest to jedyne ograniczenie. Znaczy to, że pozostałe składowe leżą na sferze wymiarze o jeden mniejszym i mniejszym promieniu. Pole powierzchni sfery S^n jest równe pewnej stałej zależnej od wymiaru razy promień sfery do potęgi n-tej:

S_n(r)=C_n r^n.

Korzystając z tego faktu możemy szukane prawdopodobieństwo zapisać w postaci

p(x)dx=\dfrac{S_{3N-2}(\sqrt{R^2-x^2})}{S_{3N-1}(R)} R\Delta\vartheta \sim \left(1-\dfrac{x^2}{R^2}\right)^{\frac{3N}{2}}dx.

Ostatnie wyrażenie możemy dla dużych wartości N zapisać jako potęgę liczby e:

\left(1-\dfrac{x^2}{R^2}\right)^{R^2\cdot\frac{3N}{2R^2}}dx=\exp(-\alpha x^2) dx.

Parametr \alpha jest równy

\alpha=\dfrac{3N}{2R^2}=\dfrac{3Nm}{4E}=\dfrac{3m}{4\epsilon},

gdzie \epsilon jest energią przypadającą na jedną cząsteczkę gazu. Możemy wyrazić tę ostatnią energię za pomocą temperatury T:

\epsilon=\dfrac{3}{2}kT \Rightarrow \alpha=\dfrac{m}{2kT}.

Otrzymaliśmy rozkład Maxwella. Stałą C można znaleźć z warunku unormowania (można ją też obliczyć bezpośrednio, potrzeba jednak wówczas wiedzieć więcej nt. stałych C_n, czyli postaci wzoru na pole sfery S^n).

Rozkład Maxwella wynika więc z założenia o równomiernym rozkładzie prawdopodobieństwa na sferze w przestrzeni 3N-wymiarowej. Założenie to nazywane jest rozkładem mikrokanonicznym i jest jednym z postulatów fizyki statystycznej. Wyobrażamy sobie, że stan naszego układu, czyli wektor Y wędruje po dozwolonej powierzchni w taki sposób, że jego koniec może znaleźć się z jednakowym prawdopodobieństwem w otoczeniu każdego punktu sfery. Jest to założenie ergodyczności.

Oczywiście, nie znaczy to, że układ zderzających się cząstek gazu musi być ergodyczny. Jak to często bywa w fizyce: z jednej strony pośrednio sprawdzamy to założenie, badając rozmaite jego konsekwencje i porównując z doświadczeniem. Z drugiej strony, można badać pewne proste przypadki, aby sprawdzić, czy założenie ergodyczności jest prawdziwe w tych sytuacjach. W 1963 r. Yakov Sinai, wybitny matematyk rosyjski, udowodnił, że gaz doskonały sztywnych zderzających się kul jest ergodyczny.

W pewnej chwili zamieniliśmy R \Delta\vartheta wartoscią dx. Nie są one ściśle biorąc równe, mamy bowiem

dx=-R\sin\vartheta d \vartheta \Rightarrow Rd\vartheta=\dfrac{dx}{\sqrt{1-\frac{x^2}{R^2}}}.

Dodatkowy czynnik pod pierwiastkiem nie ma znaczenia, gdy wartości R są duże. Widać to też z rysunku: gdy |x|\ll R, to R d\vartheta \approx dx.