Erwin Schrödinger: trzeci początek mechaniki kwantowej (1926)

Równanie Schrödingera zasługuje na swoją sławę: dzięki niemu znamy nie tylko budowę atomów, ale i cząsteczek chemicznych czy ciał skondensowanych. Wynikają z niego najprzeróżniejsze własności materii, która nas otacza, a także materii we wszechświecie. Jest więc równaniem niezwykle istotnym tak dla fundamentów fizyki, jak i dla zastosowań.

Autor najsłynniejszego równania dwudziestowiecznej fizyki aż do roku 1926 nie należał do ścisłej czołówki fizyków teoretycznych. Zaledwie osiem lat młodszy od Einsteina, dopiero od 1921 roku zajmował katedrę na uniwersytecie w Zurychu. Studiował w Wiedniu, zbyt późno by zetknąć się osobiście z Ludwigiem Boltzmannem czy Ernstem Machem, choć wpływ obu tych uczonych wciąż dawał się tam odczuć. Fizyki teoretycznej uczył się u Friedricha Hasenöhrla, bliskiego przyjaciela Mariana Smoluchowskiego. Do tej pory niewiele zajmował się teorią kwantową, ponieważ opierała się ona wciąż na bardzo grząskich podstawach, korzystając po trosze z fizyki klasycznej, a po trosze z postulatów kwantowania, wyraźnie z nią sprzecznych. Zwrócił jednak uwagę na pracę Louisa de Broglie na temat fal materii. Postulowała ona, że zarówno fotony, jak i inne cząstki mikroświata mają dualną naturę: zachowują się czasem jak cząstki, a czasem jak fale. Obowiązywał przy tym jeden uniwersalny przelicznik własności cząstkowych: energii E i pędu p na wielkości falowe: częstość (kołową) \omega i liczbę falową k\equiv\frac{2\pi}{\lambda} (\lambda jest długością fali). Współczynnikiem proporcjonalności w obu przypadakch miała być stała Plancka \hbar:

E=\hbar\omega,\,p=\hbar k.

Felix Bloch, wówczas początkujący fizyk, tak wspomina wspólne kolokwia (dziś powiedzielibyśmy raczej seminaria) fizyków z uniwersytetu w Zurychu i z ETH, gdzie najważniejszą postacią był Peter Debye.

Pewnego razu pod koniec kolokwium Debye powiedział coś w tym rodzaju: „Schrödinger nie zajmujesz się teraz żadnym ważnym tematem. Może opowiedziałbyś nam któregoś dnia o tym doktoracie de Broglie’a, który, zdaje się, przyciągnął sporo uwagi”. Więc na jednym z następnych kolokwiów Schrödinger przedstawił cudownie przejrzysty wykład o tym, jak de Broglie wiąże fale z cząstkami i w jaki sposób zdołał on uzyskać reguły kwantyzacji Bohra i Sommerfelda (…) Kiedy skończył, Debye stwierdził od niechcenia, że taki sposób ujęcia jest raczej dziecinny. Jako student Sommerfelda nauczył się, że właściwy sposób podejścia do fal wiedzie przez równanie falowe. Brzmiało to dość trywialnie i na pozór nie zrobiło głębszego wrażenia, ale Schrödinger najwyraźniej wrócił później do tego pomysłu. Zaledwie kilka tygodni później dał następne kolokwium, zaczynając od słów: „Kolega Debye zasugerował, że należy mieć równanie falowe, toteż je znalazłem”. [„Physics Today”, t. 29 (1976), nr 12, s. 23-24]

Najwyraźniej w pierwszej chwili obaj nie zdawali sobie sprawy z wagi tych badań. Erwin Schrödinger dzięki pracom z końca roku 1925 i roku 1926 stał się błyskawicznie jednym z najgłośniejszych fizyków świata. Seria jego artykułów natychmiast zyskała uznanie. Chwalili je Albert Einstein i Arnold Sommerfeld, który wraz ze swymi uczniami rozwijał od lat fizykę kwantową. Napisał do niego sędziwy Hendrik Lorentz, który uważnie śledził nowości i miał parę istotnych uwag. Surowy i poważny Max Planck, profesor najbardziej prestiżowej katedry w Niemczech (co wtedy znaczyło: najbardziej prestiżowej na świecie) – na uniwersytecie w Berlinie, pisał entuzjastycznie do Schrödingera:

Czytam pański artykuł tak, jak ciekawe dziecko, słuchające w napięciu rozwiązania zagadki, nad którą się długo głowiło, i cieszę się bardzo wszystkimi pięknościami, jakie tam dostrzegam, choć muszę go jeszcze dokładniej przestudiować, by wszystko z niego pojąć.

Kiedy w grudniu 1925 roku Schrödinger znalazł swe równanie, był to trzeci początek mechaniki kwantowej albo – jak wolał o tym mówić autor odkrycia – mechaniki falowej. Na pierwszy rzut oka nie miało to nic wspólnego z teorią Heisenberga, Borna, Jordana i Diraca. U Schrödingera nie było żadnych skoków kwantowych, żadnych wielkości macierzowych, nieprzemiennych iloczynów. Język był całkowicie klasyczny – była to matematyka drgań, dobrze już wówczas opracowana. W roku 1924 wyszła dwutomowa monografia Methoden der mathematischen Physik („Metody fizyki matematycznej”) zredagowana przez Richarda Couranta i innych matematyków z Getyngi na podstawie wykładów Davida Hilberta. Zawierała ona wiele materiału, który miał się okazać potrzebny fizykom za kilka lat. Jak na ironię metody Hilberta zastosowali pierwsi nie fizycy z grupy Maksa Borna, pracujący przecież głównie pod bokiem Hilberta w Getyndze, ale Erwin Schrödinger, outsider i naukowy samotnik. Fizycy z Getyngi zlekceważyli nawet wyraźną sugestię Hilberta w jednej z rozmów, że powinni poszukać równania różniczkowego, które opisuje skwantowane wartości energii. Nie próbowali iść tym tropem, przekonani, że ich mechanika kwantowa jest czymś całkowicie nowym i nie może się zawierać w książce sprzed paru lat. Źle przyjęli też pracę Schrödingera, która wydawała się recydywą fizyki klasycznej, odwrotem od kwantowej rewolucji spod sztandaru Heisenberga.

Fizycy klasyczni znali wiele przypadków drgań układów rozciągłych, czyli fal stojących. Są one np. podstawą wytwarzania dźwięku w instrumentach muzycznych takich, jak organy, flet, trąbka czy skrzypce. Wiadomo, że zamocowana na końcach struna drgać może tylko z określonymi ściśle częstościami: podstawową oraz jej wielokrotnościami. Rozważano różne bardziej skomplikowane możliwości, pisaliśmy tu o rówieśniku Einsteina, fizyku z Getyngi, Waltherze Ritzu. Idea Schrödingera polegała na tym, by wartości energii w atomie potraktować analogicznie do częstości dźwięku w pudle rezonansowym, stosując równanie falowe. Ma ono w przypadku trójwymiarowym postać:

\dfrac{\partial^2\psi}{\partial x^2}+\dfrac{\partial^2\psi}{\partial y^2}+\dfrac{\partial^2\psi}{\partial z^2}-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}\equiv \Delta\psi-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}=0,

gdzie v jest prędkością fal. Jeśli przyjmiemy, że nasze fale są okresowe i mają częstość \omega, możemy rozwiązania zapisać jako

\psi(x,y,z, t)=\psi(x,y,z)e^{\pm i\omega t}.

Drugą pochodna po czasie jest ta sama funkcja wykładnicza pomnożona przez stałą. Wstawiając to do równania falowego, otrzymujemy tzw. równanie Helmholtza (który pod koniec XIX wieku był profesorem w Berlinie):

\Delta \psi+k^2 \psi=0.

W równaniu tym skorzystaliśmy z tego, że \dfrac{\omega}{v}=k. Droga Schrödingera do odkrycia była dość zawikłana. Związki de Broglie’a są relatywistyczne, naturalne wydawało się więc zapisanie równania relatywistycznego. Jednak kiedy spróbujemy je rozwiązać w najprostszym przypadku atomu wodoru, okazuje się, że dopuszczalne energie nie zgadzają się z tym, co wcześniej, w starej teorii kwantów obliczył Sommerfeld i co zgadzało się z doświadczeniem (szczegóły można znaleźć u L. Schiffa, Mechanika kwantowa, s. 409 i n.). Dwa lata później sytuacja się wyjaśniła: potrzebne tu jest równanie Diraca. Dwa lata w tamtej chwili rozwoju fizyki to było więcej niż epoka, Schrödinger znajdował się dopiero u początków tej drogi i nie mógł wiedzieć, co stanie się dalej. Rozsądnie zdecydował się więc na przybliżenie nierelatywistyczne, robiąc niejako krok wstecz w porównaniu do de Broglie’a. Nie pójdziemy tu jego drogą, a właściwie kilkoma różnymi drogami, jakimi próbował uzasadnić swe równanie. Wybierzemy podejście najprostsze zaproponowane pół roku później przez Maksa Borna – musimy jednak pamiętać, że nie jest to wyprowadzenie. Nie można bowiem wyprowadzić praw mechaniki kwantowej z praw klasycznych. Dla cząstki o masie m i całkowitej energii E możemy napisać równanie zachowania energii:

E=\dfrac{\hbar^2 k^2}{2m}+V(x,y,z),

gdzie V jest energią potencjalną (pierwszy składnik to zwykła energia kinetyczna). Jeśli wyznaczymy k^2 z ostatniego równania i wstawimy do równania Helmholtza, otrzymamy tzw. równanie Schrödingera bez czasu:

-\dfrac{\hbar^2}{2m}\Delta\psi+V\psi=E\psi.

Chcąc np. opisać ruch elektronu wokół nieruchomego jądra atomowego o ładunku Ze, należy wstawić do równania Schrödingera energię potencjalną postaci

V(r)=-\dfrac{Ze^2}{4\pi \epsilon_0 r},

czyli zwykłą energię potencjalną przyciągania elektrostatycznego dwóch ładunków Ze oraz -e w odległości r. Szukamy takich funkcji \psi(x,y,z), które daleko od jądra zanikają. Okazuje się, że rozwiązania takie są możliwe tylko dla dyskretnych wartości energii równych

E_n=-\dfrac{me^4}{2(4\pi\epsilon_0)^2 \hbar^2}\dfrac{1}{n^2}, \mbox{ gdzie } n=1,2, 3, \ldots.

 Jest to wynik uzyskany w roku 1913 przez Bohra z założeń, które od początku wydawały się aktem rozpaczy, a nie solidną nauką. Równanie Schrödingera miało więc sens, choć nadal brakowało pewnych elementów do kompletnej teorii. Jednym z najważniejszych było znaczenie samej funkcji \psi. Kiedy w piszczałce organowej czy w rurce fletu wytwarzany jest dźwięk, wiemy, co drga – jest to powietrze, które ściśnięte się rozpręża, a rozprężone wraca do początkowej gęstości. Co drga w atomie wodoru? Jakie jest znaczenie funkcji \psi? Co gorsza, okazało się, że powinna ona mieć wartości zespolone, z pewnością nie było to żadne proste drganie klasyczne. Geniusz Schrödingera ujawnił się i w tym, że nie próbował odpowiedzieć na wszystkie pytania naraz i pozwolił swoim ideom rozwijać się w czasie. Publikacje uczonego z pierwszego półrocza 1926 roku wystarczyły na Nagrodę Nobla i objęcie w roku 1927 katedry w Berlinie po odchodzącym na emeryturę Maksie Plancku.

Erwin Schrödinger, człowiek wszechstronnie wykształcony, o szerokich zainteresowaniach, całkowicie zaprzecza ascetycznej wizji uczonego, który nie ma czasu na nic oprócz nauki. Wydaje się wręcz, że jego pomysłowość przy stworzeniu słynnego równania szła w parze z gorączką miłosną. Praca ta powstała w uzdrowisku Arosa, gdzie wybrał się w towarzystwie do dziś nie znanej flamy. Jego małżeństwo należało do nowoczesnych i partnerzy pozostawiali sobie bardzo wielką swobodę. Były przecież lata dwudzieste: kobiety odsłoniły nogi, tańczono charlestona, wszyscy chcieli zapomnieć o koszmarze niedawnej wielkiej wojny.

 

 

 

 

 

Reklamy

Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.