Kosmologia relatywistyczna w kwadrans II

  • Metryka czasoprzestrzeni

Dla naszego jednorodnego i izotropowego modelu z płaską 3-przestrzenią metryka wszechświata przyjmuje prostą postać:

ds^2=c^2 dt^2-R^2 d\vec{x}\,^2=c^2 dt^2-R^2 (dr^2+r^2 d\vartheta^2+r^2 \sin^2\vartheta d\varphi^2).

Druga postać zapisana jest przez współrzędne sferyczne r, \vartheta, \varphi. Współrzędne x,y,z oraz r, \vartheta, \varphi dla danej galaktyki pozostają stałe (o ile nie ma ona ruchu własnego, a tylko bierze udział w rozszerzaniu wszechświata: przepływie Hubble’a). Jedyny parametr, czynnik skali R(t) opisuje ewolucję wszechświata, czyli jego rozszerzanie (choć równie dopuszczalne teoretycznie byłoby kurczenie się). Czasoprzestrzeń ta nie jest płaska, mimo że płaska jest 3-przestrzeń. Ogólna teoria względności dopuszcza dowolne układy współrzędnych, ten nasz wyróżniony jest fizycznie: w tym układzie współrzędnych mamy wspólny kosmiczny czas oraz współrzędne współporuszające się. Odległość danej galaktyki od nas (r=0) równa jest

D=R(t)r,

oznacza to, że szybkość oddalania się danej galaktyki równa jest (przyjmujemy, że galaktyka nie ma ruchu własnego):

\dot{D}=\dot{R}r =\dfrac{\dot{R}}{R}Rr\equiv H(t) D.

Jest to prawo Hubble’a. Zauważmy, że ta odległość mierzona jest w danej chwili kosmicznego czasu, a więc i prędkość powinna być obecną prędkością galaktyki. W rzeczywistości nie możemy obserwować całej przestrzeni w żadnej chwili – jedyne, co widzimy, to stożek przeszłości: dalsze obiekty w chwilach odpowiednio wcześniejszych itd. W napisanym powyżej prawie Hubble’a prędkość nie musi być mniejsza niż c. Nie musimy się tym przejmować, ponieważ startujemy z metryki, która automatycznie zapewnia lokalną stałość prędkości, a jedynie to się liczy.

  • Mikrofalowe promieniowanie tła (CMB)

Do tej pory mówiliśmy tylko o grawitacji, nie interesowaliśmy się zjawiskami opisanymi przez inne dziedziny fizyki. Jeśli wszechświat był kiedyś gęsty, to musiał także być gorący. Rozpatrzmy, co się dzieje z gęstością energii promieniowania u (w dżulach na metr sześcienny), gdy objętość V się zmienia. Z I zasady termodynamiki mamy (rozszerzanie jest adiabatyczne):

dE=d(uV)=V du+u dV=-p dV,

gdzie p jest ciśnieniem promieniowania. Jest ono równe p=\frac{1}{3}u. Wstawiając to do I zasady termodynamiki i korzystając z faktu, że V=\frac{4}{3}\pi R^3, a dV=4\pi R^2 dR, dostaniemy

\dfrac{du}{u}+4\dfrac{dR}{R}=0\Rightarrow u\sim R^{-4}.

Gęstość energii podzielona przez c^2 daje wkład promieniowania do całkowitej gęstości materii – wielkość, którą należy traktować jako źródło grawitacji w równaniu (*) z pierwszej części. Patrząc nieco inaczej, długość fali promieniowania powinna skalować się, jak R^{-1}, a liczba fotonów w jednostce objętości jak R^{-3}.

Ponieważ energia atomów zależy od współczynnika skali jak R^{-3}, więc dla małych R energia promieniowania wszystko zdominuje. Wiadomo też, że gęstość energii promieniowania jest proporcjonalna do czwartej potęgi temperatury T^4, otrzymujemy więc

T\sim\dfrac{1}{R}.

Temperatura promieniowania jest tym wyższa, im bliżej Wielkiego Wybuchu jesteśmy i energia promieniowania dominuje nad innymi postaciami energii. Mamy więc gorący Wielki Wybuch. W 1965 roku zaobserwowano promieniowanie, które pozostało z wczesnego etapu wszechświata i które z tego powodu zwane jest też reliktowym, jest bowiem czymś w rodzaju skamieliny. Od tamtej pory badane jest ono z coraz większą dokładnością przez różne misje, ostatnią był satelita Planck.

To, co dociera do nas z każdego kierunku wszechświata jest promieniowaniem cieplnym, rozkładem Plancka, o temperaturze niecałe 3K, a więc głównie mikrofalowym. Promieniowanie to jest obrazem wszechświata w chwili t=380 \,000 lat po Wielkim Wybuchu. Zostało wyemitowane gdy czynnik skali był 1000 razy mniejszy niż dziś, miało więc ono wówczas temperaturę 3000 K i przypadało na obszar widzialny i podczerwień. Co więcej, okazuje się, że z bardzo dużą dokładnością (10^{-5}) temperatura owego promieniowania jest taka sama w każdym kierunku. Kolejne misje satelitarne badały właśnie owe fluktuacje: ich rozkład i wielkość zawierają najróżniejsze informacje na temat wszechświata w tamtym momencie. Z niejednorodności tych wyewoluował dzisiejszy wszechświat.

Skąd wzięło się promieniowanie tła? Wszechświat przed t=380\, 000 lat składał się głównie z protonów i elektronów, które miały na tyle dużą energię kinetyczną (temperaturę), że nie łączyły się w atomy wodoru. Taka plazma silnie rozprasza promieniowanie elektromagnetyczne, ponieważ naładowane cząstki wprawiane są przez nie w drgania, a to z kolei oznacza wysyłanie nowej fali elektromagnetycznej (jak w antenie) kosztem energii fali pierwotnej. W rezultacie energia wysyłana jest na wszystkie strony, ośrodek nie przepuszcza promieniowania. Sytuacja zmieniła się, gdy temperatura spadła na tyle, by elektrony mogły utworzyć z protonami atomy wodoru. Powstał wtedy zwykły atomowy gaz, tak samo przezroczysty jak np. powietrze. Od tamtej pory termodynamiczne losy atomów i promieniowania rozprzęgły się. Z atomów powstało wszystko, co dziś widzimy: gwiazdy, planety, galaktyki itp., natomiast promieniowanie stygło w miarę rozszerzania, aż dotarło do nas.

Mała dygresja. Przy okazji promieniowania zauważmy, że statyczny wszechświat Einsteina, omawiany poprzednio, byłby niestabilny także z powodów astrofizycznych. Gdyby nawet dobrać odpowiednio jego gęstość i stałą grawitacyjną, to po pewnym czasie zmieniłaby się jego zawartość: gwiazdy syntetyzują hel z wodoru i cięższe pierwiastki z lżejszych, zamieniając różnicę energii na promieniowanie. Z czasem więc mniej będzie materii atomowej, a więcej promieniowania. Gdyby to było wszystko, pole grawitacyjne by się nie zmieniło, ponieważ obie zmiany są równe za sprawą zasady zachowania energii. Jednak źródłem pola grawitacyjnego jest nie sama gęstość materii \varrho, lecz wielkość \varrho+3p/c^2. Oznacza to, że pole grawitacyjne stanie się silniejsze po zamianie materii atomowej na promieniowanie, gdyż dla promieniowania (po uwzględnieniu, że p=u/3c^2\equiv \varrho/3) mamy: \varrho +3p/c^2=2\varrho. W einsteinowskiej grawitacji ciśnienie światła też jest źródłem pola grawitacyjnego.

  • Odległości

W rozszerzającym się wszechświecie należy być ostrożnym, kiedy mówi się o odległościach. Jedną z możliwych definicji wymieniliśmy wyżej: to odległość mierzona w danym momencie kosmicznego czasu. Do innej miary odległości prowadzi chwila wyemitowania światła t_e, które obserwujemy dziś w t_0. Światło to biegło więc t_0-t_e lat. Jak daleko znajdowało się owe źródło w chwili emisji? Inaczej mówiąc, jak daleko dotrze światło wysłane w chwili t_e z punktu r=0 i odebrane w chwili t_0? Światło biegnie po linii świata, dla której ds=0, a więc jego współrzędna r w chwili t_0 będzie równa

c dt=R(t) dr \Rightarrow r={\displaystyle \int_{t_e}^{t_0}}\dfrac{c dt}{R(t)}.

Odległość tego punktu w chwili emisji jest dana równaniem

D=R(t_e)r,

a dzisiejsza odległość tego punktu równa jest

D_{now}=R(t_0)r.

Odległość D jako funkcja chwili emisji jest to stożek przeszłości zbudowany na zdarzeniu tu i teraz. Ponieważ wszechświat kurczy się, gdy cofamy się w czasie, więc odległości D osiągają maksimum dla pewnej chwili emisji. Oznacza to, że wszystko, co widzimy, znajduje się w odległościach nie większych od owego maksimum. W ten sposób kątowe rozmiary galaktyk osiągają pewne minimum, a te, które wysłały światło jeszcze wcześniej, będą widziane jako większe na niebie (choć słabsze).

Na rysunku widzimy kształt stożka przeszłości i dwie linie świata galaktyk. Każdą z nich mogliśmy zobaczyć w chwili przecięcia jej linii świata ze stożkiem przeszłości. Obie były wtedy w podobnej odległości, powinny więc być jednakowej wielkości kątowej. Światło odpowiadające czerwonej galaktyce biegło do nas dłużej, a  jego długość fali rozciągnęła się bardziej, uległa większemu przesunięciu ku czerwieni w języku astronomów. Dziś obie znajdują się znacznie dalej od nas, ale już tego nie zobaczymy.

  • Trudności kosmologii Wielkiego Wybuchu: płaskość i horyzonty

Obserwowana 3-przestrzeń jest płaska. Oznacza to, że całkowita gęstość wszystkich form energii równa się dokładnie wartości krytycznej. Inaczej mówiąc nasz wszechświat ma dokładnie prędkość ucieczki: ani mniej, ani więcej. Oznacza to, że np. w jedną nanosekundę po Wielkim Wybuchu gęstość musiała być dopasowana bardzo ściśle, inaczej nasz wszechświat zachowywałby się całkiem inaczej. To tak, jakbyśmy wystrzelili z Ziemi pocisk z prędkością idealnie równą 11,2 km/s, ani trochę więcej, ani trochę mniej. Nie jest to niemożliwe, nie wygląda jednak na sytuację zbyt „naturalną” – postawiłem cudzysłów, ponieważ nie wiemy, co jest, a co nie jest naturalne dla wszechświata. Fizycy woleliby jakiś mechanizm, który faworyzuje płaski wszechświat.

Źródło: Ned Wright Cosmological Tutorial

Innym problemem jest stałość temperatury promieniowania tła docierającego z każdej strony. Na pierwszy rzut oka stałość ta wygląda zdroworozsądkowo: gaz był w równowadze termicznej, więc wysyłał promieniowanie o jednej temperaturze. Żeby zobaczyć, dlaczego jest to problem, wprowadźmy tzw. czas konforemny, spełniający warunek dt =R d\tau. Mamy wówczas

ds^2=R^2(c^2 d\tau^2-d\vec{x}\,^2).

Nasza metryka jest taka jak przestrzeni Minkowskiego, choć niezupełnie, gdyż przemnożona jest przez pewien wspólny czynnik skali. Nie ma sztuczki sprowadzającej zakrzywioną przestrzeń do płaskiej, ponieważ są one geometrycznie różne. Nasza czasoprzestrzeń nadal jest zakrzywiona, czego oznaką jest funkcja R(t). Jednak takie współrzędne są wygodne, gdyż zapewniają, że światło na wykresie czasoprzestrzennym biegnie pod kątem \pm 45^{\circ} (przyjmujemy c=1). Galaktyki w tym układzie współrzędnych mają stałe położenia, czyli ich linie świata biegną pionowo w górę. Sytuacja wygląda wówczas następująco. W chwili rozprzęgnięcia promieniowania z atomami stożki przeszłości różnych punktów CMB były rozłączne.

Rozłączne stożki przeszłości oznaczają, że w przeszłości zdarzenia takie nie miały żadnych wspólnych zdarzeń, a więc i możliwości wyrównania temperatury, bo takie wyrównywanie następuje dzięki wymianie energii. Izotropia promieniowania tła staje się więc wynikiem jakiegoś bardzo szczególnego wyboru warunków początkowych. Znów: fizycy woleliby nie zakładać aż tak szczególnych warunków początkowych. Obliczenia pokazują, że promieniowanie docierające z kątów większych niż $1,5^{\circ}$ powinno być fizycznie niezależne. Cała sfera niebieska rozpada się na ok. 10 000 niezależnych kawałków. Z jakiegoś powodu wszystkie te kawałki mają taką samą temperaturę.

Standardowym sposobem uniknięcia tych paradoksów jest inflacja. W bardzo wczesnym etapie po Wielkim Wybuchu, np. t=10^{-35} s przez bardzo krótki czas mamy dużą stałą kosmologiczną i wszechświat rozszerza się wykładniczo zgodnie z modelem de Sittera. Potem wraca do zwykłego modelu, o którym mówiliśmy. W przypadku płaskości skutek inflacji jest taki, jakbyśmy niewiarygodnie mocno nadmuchali balon: jego powierzchnia stanie się automatycznie płaska, przynajmniej dla naszej dokładności pomiarów. Także problem horyzontu rozwiązuje się wtedy dość naturalnie. Inflacja trwa bardzo krótko, licząc w czasie kosmicznym, ale długo w czasie konforemnym. Wygląda to tak.

Skutek jest więc taki, jakbyśmy cofnęli chwilę Wielkiego Wybuchu i dzięki temu stożki przeszłości różnych punktów promieniowania tła zdążyły się zetknąć.

Inflacja przewiduje także właściwe zachowanie fluktuacji promieniowania tła, co jest ważne, bo przesądza o dalszej ewolucji wszechświata.

Jak to zwykle bywa, każde rozwiązanie rodzi dalsze pytania i trudności. Nie wiadomo nic o konkretnym fizycznym mechanizmie inflacji, to znaczy wiadomo tyle, ile wynika z ograniczeń kosmologicznych, nic nie wiemy natomiast o konkretnych polach, które miałyby inflację wywołać. Jest też problem łagodnego wyjścia z fazy inflacyjnej, tzw. graceful exit. Chodzi o to, że modele przewidujące inflację na ogół nie chcą się zatrzymać, lecz dalej wywołują zachowania budzące wątpliwości. Np. generują bąble czasoprzestrzeni, które byłyby oddzielnymi wszechświatami. Nie ma więc żadnego ogólnie przyjętego opisu tej fazy wszechświata. Niektórzy, np. Roger Penrose, sądzą, że idea ta więcej kłopotów rodzi niż rozwiązuje.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s