Paul Painlevé, Einstein i czarne dziury (1921-1922)

Dzieje rodziny Paula Painlevé’go mogłyby posłużyć jakiemuś nowemu Balzacowi: dawni winogrodnicy, bednarze i kamieniarze, w pokoleniu dziadków zajęli się drukarstwem i litografią, przyszły ojciec uczonego z drukarza-litografa przeobraził się w przedsiębiorcę, producenta farby drukarskiej. Paul uczył się w renomowanych liceach paryskich Saint-Louis i Louis-le-Grand, a studiował matematykę w prestiżowej École normale supérieure, będącej znakomitym wstępem zarówno do kariery naukowej, jak politycznej. (Jej absolwenci zdobyli trzynaście Nagród Nobla, dziesięć Medali Fieldsa i dwie Nagrody Abela). Painlevé uzupełniał wykształcenie matematyczne w Getyndze u Hermanna Schwarza i Feliksa Kleina. W roku 1900, będąc jeszcze przed czterdziestką został członkiem Akademii Nauk, co naszej rodaczce Marii Skłodowskiej-Curie nie udało się nigdy, pomimo dwóch Nagród Nobla. Francuskie elity naukowe były mocno konserwatywne i nie każdy mógł zostać do nich dopuszczony. Painlevé interesował się także lotnictwem: teoretycznie – obliczając siłę nośną oraz praktycznie – odbywając w roku 1908 z Wilburem Wrightem ponadgodzinny lot na wysokości 10 m, przebyli 55 km i szczęśliwie wylądowali, był to ówczesny rekord. Alma Mahler wspomina, że Painlevé należał do entuzjastów symfonii Gustava Mahlera i jeździł specjalnie w różne miejsca, aby ich wysłuchać. Razem z generałem Georges’em Picquartem grywali je podobno na fortepianie w aranżacjach na cztery ręce. Wyciągi fortepianowe dzieł symfonicznych czy oper były dość popularne w czasach, gdy muzyki można było słuchać jedynie na żywo, a fortepiany lub pianina stały w niemal każdym mieszczańskim domu. Z Picquartem łączyły Painlevé’go poglądy w sprawie Dreyfusa, to właśnie Picquart udowodnił, że nie Alfred Dreyfus, lecz Ferdinand Esterhazy był szpiegiem w armii francuskiej. Przez kraj przetoczyła się wcześniej zajadła kampania antysemicka, wysokie dowództwo armii nie chciało przyznać się do błędu i Dreyfus został zrehabilitowany przeszło dziesięć lat po degradacji i uwięzieniu na Diabelskiej Wyspie. W 1910 r. Painlevé został socjalistycznym deputowanym do parlamentu. Od tej pory zajmował się czynnie polityką, bywał ministrem, przewodniczącym Izby Deputowanych, a nawet premierem. W 1921 roku zaczął zabiegać o wizytę Einsteina w Paryżu, niewątpliwie pragnąc w ten sposób zbliżyć oba narody po krwawej wojnie. W następnym roku Einstein rzeczywiście przyjął zaproszenie i przyjechał, o czym pisałem.

Painlevé interesował się nie tylko aspektem politycznym, zajął się bliżej teorią względności, z czego wynikło kilka prac oraz ożywione dyskusje z Einsteinem w Paryżu. Matematyk odkrył nowy sposób opisu pola grawitacyjnego wokół masy punktowej, z czego wyciągnął dość radykalne wnioski, osłabiające w jego mniemaniu, teorię względności. Einstein, nie zgadzając się z tymi wnioskami, nie potrafił wtedy udzielić bardziej konkretnej odpowiedzi. Dyskusje te miały także pewne praktyczne następstwa. Otóż szwedzki okulista, ale i matematyk, Allvar Gullstrand także odkrył ową metrykę Gullstranda-Painlevé’go, jak to się dziś nazywa. I uznał, podobnie, jak Painlevé, że teoria względności nie daje jednoznacznych przewidywań. Oznaczałoby to, że światowa sensacja wokół teorii względności po odkryciu ugięcia światła gwiazd w pobliżu tarczy słonecznej była mocno na wyrost. Gullstrand opiniował prace Einsteina dla Komitetu Noblowskiego i w roku 1921 nagrody nie przyznano. Einstein był najpoważniejszym kandydatem, ale Gullstrand podważał wartość jego prac. W końcu Nagrodę przyznano Einsteinowi dopiero w roku 1922 (za poprzedni rok), a więc po długim bardzo namyśle. W dodatku uznano, że bezpieczniej będzie zostawić na boku kwestię teorii względności, toteż przyznano Nagrodę za wyjaśnienie zjawiska fotoelektrycznego – w tym przypadku nie było wątpliwości, że przewidywania Einsteina zostały wyraźnie potwierdzone eksperymentalnie. Painlevé wyrażał swą krytykę o tyle bardziej dyplomatycznie, że uznawał zarazem wartość poznawczą podejścia Einsteina i zestawiał go z Lagrange’em. Obaj jednak, zarówno Francuz, jak Szwed, mieli spore zastrzeżenia.

Opiszę, na czym polegały zastrzeżenia Painlevé’go i co odpowiadał mu Einstein (na ile to dziś wiadomo). W drugiej części opiszę metrykę Gullstranda-Painlevé’go i jej konsekwencje: czarną dziurę. Uczeni pomiędzy rokiem 1915 a latami pięćdziesiątymi XX stulecia wiele razy natykali się na zagadnienie czarnych dziur i na rozmaite sposoby cofali się przed ich uznaniem, błędnie interpretując swoje równania. Pokazuje to, że interpretacja formalizmu matematycznego była tu niesłychanie trudnym problemem, znacznie poważniejszym niż formalne przekształcenia, które w różnych wersjach wykonywało wielu uczonych.

Ogólna teoria względności ma tę własność, że możemy używać w zasadzie niemal dowolnych czterech współrzędnych dla opisania miejsca i czasu. Same współrzędne nie muszą nic oznaczać z fizycznego punktu widzenia, tę samą sytuację można więc opisywać na różne sposoby. Często nie widać, że owe różne opisy dotyczą w istocie tej samej sytuacji. Tak było w przypadku metryki Gullstranda-Painlevé’go.

Czasoprzestrzeń wokół punktowej masy m w teorii Einsteina opisana jest metryką Schwarzschilda:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2-\dfrac{dr^2}{1-\dfrac{r_S}{r}}-r^2 d\varphi^2.

Stała r_S jest promieniem Schwarzschilda (dziś: promieniem horyzontu czarnej dziury). Painlevé i niezależnie od niego Gullstrand odkryli, że można tę samą sytuację opisać także za pomocą innej metryki:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2+2\sqrt{\dfrac{r_S}{r}}dr dt-dr^2-r^2 d\varphi^2.

W obu przypadkach zapisałem metrykę tylko w płaszczyźnie równikowej, żeby mniej pisać (mamy wtedy jedynie zmienne t, r,\varphi). Painlevé podał także inne możliwe postaci owej metryki, sugerując, że dowodzi to, iż teoria Einsteina jest w istocie pusta, można bowiem wyciągnąć z niej rozmaite wnioski dla tej samej sytuacji fizycznej. Np. w pierwszej metryce przestrzeń trójwymiarowa nie jest euklidesowa, a w drugiej jest. Ergo wnioski Einsteina dotyczące światła w polu grawitacyjnym Słońca oraz ruchu Merkurego są nieuzasadnione. Podobnie rozumował Gullstrand, słuchany uważnie przez Komitet Noblowski.

Painlevé uznał, że wyciąganie z postaci metryki wniosków fizycznych to „czysta fikcja”. Zakomunikował to na posiedzeniu paryskiej Akademii Nauk i uprzejmie doniósł o tym listownie Einsteinowi. Na co Einstein, członek berlińskiej Akademii Nauk, równie uprzejmie oznajmił, że „metryczna interpretacja ds^2 nie jest żadną «pure imagination», lecz samym sednem teorii (der innerste Kern)” [Einstein Papers, t. 12, s. 369]. Podkreślał też, że same współrzędne nie znaczą nic, trzeba z nich dopiero wyciągnąć wnioski fizyczne nt. czasu i odległości.

Pewne zbliżenie stanowisk nastąpiło podczas dyskusji w Paryżu, choć Painlevé pisał już mniej bojowo, wkrótce zresztą wrócił do polityki. Paul Langevin podsumował to, mówiąc, że byłoby lepiej, gdyby Painlevé przeczytał o teorii względności, zanim wystąpił ze swą krytyką, a nie dopiero później. Tak to w akademiach bywa: ludzie dostają się do nich dzięki dawnym osiągnięciom, a nie stanowi to żadnej gwarancji, że dobrze rozumieją nowości naukowe. W dodatku akademie (przynajmniej wtedy) drukowały wszystko, co ich członkowie uznali za ciekawe. Dyskusja w paryskiej Akademii Nauk na temat teorii względności w latach 1921-1922 nie stała na zbyt wysokim poziomie. Akademicy byli na ogół niechętni Einsteinowi. Na propozycję, aby go przyjąć na członka-korespondenta, jeden z szacownych uczonych zareagował stwierdzeniem, że trudno wyróżniać w ten sposób człowieka, który „zniszczył mechanikę”.

Podczas wizyty Einsteina matematyk Jacques Hadamard zapytał o kwestię osobliwości metryki Schwarzschilda dla r=r_S. Niemiecki uczony przekonywał, a nawet poparł pewnymi rachunkami, które przeprowadził z dnia na dzień, że taka „katastrofa Hadamarda” nie może się zdarzyć w rzeczywistości, ponieważ zanim skoncentruje się materię pod promieniem Schwarzschilda, to wcześniej ciśnienie wewnątrz takiej gwiazdy stanie się nieskończone. Nie miał w tej kwestii racji, ale także później starał się dowodzić, że czarne dziury są niemożliwe. Einstein martwił się o spójność własnej teorii, ale wyrażał też dość powszechne stanowisko, Arthur Eddington, największy specjalista od budowy wnętrza gwiazd, twierdził, że z pewnością musi istnieć prawo fizyczne zabraniające takiego upakowania materii.

Jak można spojrzeć na tę dyskusję z perspektywy czasu, mając po swej stronie „łaskę późnego urodzenia”? Na wątpliwości Hadamarda (jak najbardziej uzasadnione) odpowiada metryka Painlevé’ego. Wystarczy spojrzeć, że nic się tam nie dzieje przy r=r_S (także jej wyznacznik jest różny od zera). Zatem w innych współrzędnych osobliwości tu nie ma i Einstein nie musiał się męczyć żadnymi rachunkami. Katastrofa Hadamarda jest osobliwością konkretnych współrzędnych Schwarzschilda, to coś w rodzaju „osobliwości” współrzędnych geograficznych na biegunie ziemskim, gdzie zbiegają się wszystkie południki. Wiemy jednak, że nic się tam złego nie dzieje z Ziemią.

W dodatku metryka Painlevé’go ze znakiem minus przed pierwiastkiem też stanowi rozwiązanie równań Einsteina. Nietrudno zobaczyć, co wtedy otrzymamy dla światła, tzn. gdy ds^2=0. Załóżmy dodatkowo, że promień świetlny biegnie radialnie, tzn. d\varphi=0. Dostajemy

0=\left(1-\dfrac{r_S}{r}\right)dt^2 -2\sqrt{\dfrac{r_S}{r}} dr dt-dr^2.

Dzieląc obie strony przez dt^2, dostajemy równanie kwadratowe dla prędkości radialnej. Jego rozwiązania dane są wyrażeniem:

\dfrac{dr}{dt}=\pm 1 -\sqrt{\dfrac{r_s}{r}}.

Równanie to opisuje dwa skrajne promienie świetlne: spadający na centrum i oddalający się od centrum. Gdy r>r_S jeden z nich zbliża się do centrum, drugi oddala. Kiedy jednak przekroczymy punkt „katastrofy Hadamarda” i r<r_S oba promienie zbliżają się ku centrum. Znaczy to, że nawet promień świetlny nie może się wydostać poza obszar r<r_S, czyli spod horyzontu czarnej dziury.

Przejście do współrzędnych Painlevé’go nie zmienia współrzędnej r, lecz jedynie czas. Jest on teraz mierzony jako czas własny cząstek spadających z nieskończoności na centrum. Są to współrzędne padającego deszczu, jak nazywają to Edwin F. Taylor i John Archibald Wheeler (*) w swej książce Exploring Black Holes.

 

 

(Na rysunku odległości i czasy wyskalowane są w promieniach Schwarzschilda)

Gdy cząstka mija horyzont, jej stożek przyszłości zaczyna być zwrócony ku wnętrzu, a to znaczy, że niebawem spadnie na centralną osobliwość. Drugi znak we współrzędnych Painlevé’go odpowiadałby wznoszeniu się z centrum do nieskończoności. Prawa grawitacji nie mówią nic na temat kierunku czasu: zawsze możliwy jest ruch przeciwny. Jak się zdaje, tylko współrzędne związane ze spadaniem mają jakiś sens fizyczny. W 1922 r. nie miał o tym wszystkim pojęcia ani Paul Painlevé, ani Albert Einstein.

(*) John Wheeler był autorem określenia „czarna dziura”.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s