Od zasady najdłuższego czasu do równań Maxwella III

W poprzednich dwóch częściach rozpatrzyliśmy zasadę wariacyjną dla cząstki w polu, które okazało się elektromagnetyczne (przy okazji otrzymaliśmy siłę Lorentza) oraz zasadę wariacyjną dla pola elektromagnetycznego. Skoro zaszło się tak daleko, warto może pokazać jeszcze kilka prostych konsekwencji tego, co uzyskaliśmy. Dwa równania Maxwella (prawo Gaussa i prawo Ampère’a) mają u nas postać:

\partial^{\mu}F_{\mu\nu}=\mu_0 j_{\nu},\mbox{(1)}

gdzie j_{\nu}=(c\rho,-\vec{j}) jest czterowektorem gęstości ładunku oraz gęstości prądu; nie wprowadzaliśmy ich poprzednio, ponieważ ominęliśmy obliczenie wariacji lagranżianu oddziaływania pola z cząstkami, wyraz taki ma postać -\int j^{\mu}A_{\mu} d^{4}x. Jasne jest, że muszą pojawić się jakieś źródła: ładunki i prądy.

Dwa pozostałe równania Maxwella (prawo Faradaya oraz magnetyczny odpowiednik prawa Gaussa) wyglądają następująco:

\partial_{\mu}F_{\nu\rho}+\partial_{\rho}F_{\mu\nu}+\partial_{\nu}F_{\rho\mu}=0.\mbox{(2)}

Z równości tej otrzymujemy cztery równania skalarne, gdy trzy wskaźniki są różne. Jednak samo równanie jest prawdziwe dla dowolnego zestawu wskaźników, przy powtarzających się dostajemy tożsamościowo zero, np.

\partial_{0}F_{01}+\partial_{1}F_{00}+\partial_{0}F_{10}=0,

gdyż wyraz środkowy równy jest zeru, a dwa skrajne mają przeciwne znaki (bo F_{\mu\nu}=-F_{\nu\mu}).

Pokażemy trzy krótkie wnioski z równań zapisanych w tej postaci:

  1. Równania Maxwella w próżni sprowadzają się do równania falowego, a to znaczy, że pole elektromagnetyczne może wędrować w przestrzeni jako fala.
  2. Możemy zapisać te równania za pomocą czteropotencjału A_{\mu}.
  3. Spełniona jest zasada zachowania ładunku.

Ad 1 Obliczmy pochodną \partial^{\mu} z naszego równania (2):

\partial^{\mu}\partial_{\mu}F_{\nu\rho}+\partial^{\mu}\partial_{\rho}F_{\mu\nu}+\partial^{\mu}\partial_{\nu}F_{\rho\mu}=0.

Należy to sobie wyobrażać jako wzięcie pochodnej, a następnie wysumowanie po powtarzającym się wskaźniku. Dwa ostatnie wyrazy są w próżni równe zeru na mocy równania (1). Wyraz pierwszy to

\partial^{\mu}\partial_{\mu}=\dfrac{1}{c^2}\dfrac{\partial^2}{\partial t^2}-\dfrac{\partial^2}{\partial x^2}-\dfrac{\partial^2}{\partial y^2}-\dfrac{\partial^2}{\partial z^2}\equiv \square.

Taki operator nazywa się dalambercjanem (od Jeana Le Ronda d’Alemberta, który zajmował się jeszcze w XVIII wieku równaniem falowym) przez analogię do laplasjanu. Otrzymany wynik można więc krótko zapisać:

\square F_{\mu\nu}=0.

A więc teoria przewiduje fale w próżni.

Ad 2 Tensor pola wyraża się przez czteropotencjał następująco:

F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.

Wartości pola elektromagnetycznego otrzymujemy przez różniczkowanie, więc jasne jest, iż wybór czteropotencjału nie jest jednoznaczny. Równanie (2) zapisane za pomocą czteropotencjału daje tożsamościowo zero:

\partial_{\mu}(\partial_{\nu}A_{\rho}-\partial_{\rho} A_{\nu})+\partial_{\rho}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \partial_{\nu}(\partial_{\rho}A_{\mu}-\partial_{\mu}A_{\rho})=0.

Łatwo zauważyć, że mamy pary wyrazów różniących się tylko znakiem (kolejność różniczkowania wolno zawsze zmienić). W bardziej rozbudowanej matematycznie teorii jest to tzw. tożsamość Bianchiego (od matematyka włoskiego z przełomu XIX i XX wieku, pierwszy zresztą tę tożsamość zapisał Ricci-Curbastro, a potem odkrywana była jeszcze wiele razy na nowo). Wstawiając potencjał do równania (1), otrzymujemy

\partial^{\mu}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})=\square A_{\nu}-\partial_{\nu}(\partial^{\mu}A_{\mu})=\mu_{0}j_{\nu}.

Ostatnie równanie można uprościć, korzystając ze swobody cechowania. Możemy bowiem zażądać, żeby ostatni wyraz w nawiasie po lewej stronie był równy zeru. Ograniczamy w ten sposób dowolność wyboru czteropotencjału. Warunek ten nazywa się cechowaniem Lorenza (od duńskiego uczonego Ludwiga Lorenza, którego nie należy mylić z Holendrem Hendrikiem Lorentzem od transformacji Lorentza). Jeśli go nałożymy, to nasz czteropotencjał spełnia niejednorodne równanie falowe:

\square A_{\mu}=\mu_{0}j_{\mu}.

Tam gdzie nie ma ładunków ani prądów, otrzymujemy równanie falowe dla czteropotencjału. W tej formie równania Maxwella wyglądają więc następująco:

\begin{cases} \square A_{\mu}=\mu_{0}j_{\mu}\\ \partial^{\mu}A_{\mu}=0.\end{cases}

W tej postaci mamy tylko jedno równanie na czterowektor plus warunek cechowania. Czyli w istocie pole elektromagnetyczne nie potrzebuje sześciu składowych (po trzy dla pola elektrycznego i magnetycznego), wystarczą cztery, a nawet nieco mniej, ze względu na warunek cechowania, który ogranicza możliwości.

Ad 3 Ostatni punkt: zasada zachowania ładunku. Wynika ona z równania (1), gdy weźmiemy jego pochodną:

\partial^{\nu}\partial^{\mu}F_{\mu\nu}=0=\mu_{0} (\partial^{\nu}j_{\nu}).

Pierwsza równość pochodzi stąd, że pochodne możemy przestawiać bez zmiany znaku, natomiast tensor F_{\mu\nu} jest antysymetryczny. Tak przy okazji, nazywa się często F_{\mu\nu} tensorem Faradaya, oczywiście Michael Faraday nie miał pojęcia o tensorach, odkrył jednak, że zmienne pole magnetyczne generuje pole elektryczne. Ostatnie wyrażenie to uogólnienie dywergencji na cztery wymiary:

\dfrac{\partial\rho}{\partial t}+\nabla\cdot\vec{j}=0.

Ostatnie równanie znaczy tyle, że jeśli w danym punkcie prąd wypływa, to gęstość ładunku musi odpowiednio maleć. Ładunek jest zachowany, i to lokalnie: aby wypłynął z danej objętości, musi przeciąć powierzchnię, która tę objętość ogranicza. Jeśli był, a teraz go nie ma, to znaczy, że musiał przejść przez granicę.

Równania Maxwella zapisane jak wyżej nie tylko wyglądają prościej, ale wskazują jawnie, że teoria jest relatywistycznie kowariantna, tzn. zgodna z teorią względności. To nie koniec zalet takiego podejścia: okazuje się, że w teorii grawitacji Einsteina postać równań Maxwella jest właściwie taka sama.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s