Od nacjonalizmu do idiotyzmu: duch francuski i fizyka niemiecka (1915, 1936)

Ponieważ przybliża się chwila, gdy nasze niestrudzone władze powołają wreszcie do życia Narodowy Instytut Fizyki im. Antoniego od Wielu Wybuchów, więc warto może przypomnieć chlubne przykłady z przeszłości. Złudne jest bowiem mniemanie, że dziedziny takie, jak matematyka albo fizyka nie mają charakteru narodowego. Otóż mają i dlatego tak ważne jest promowanie autentycznie polskiej fizyki. A jakaż to będzie radość dla dziatek naszych najmilszych, gdy w programie szkół po Koperniku będzie od razu Maria Skłodowska-Curie, wypadną zaś te wszystkie Newtony, Ohmy, Hertze i Einsteiny. Wszak żarówkę wynalazł Łodygin, nie jakiś Edison. A była przecież i lampa naftowa Łukasiewicza, i elektryczne świece Jabłoczkowa. My, Słowianie (czyli w zasadzie Polacy), daliśmy światu tyle, tylko on o tym nic nie wie. Kto zaś będzie negował nasze osiągnięcia, ten skazany być może na 3 lata naszej szkoły i nawet wśród pingwinów dopadnie go karząca ręka prawa i sprawiedliwości.

Pierwszy przykład pięknej myśli narodowej w naukach ścisłych znajdujemy u Pierre’a Duhema. Wybitny specjalista od termodynamiki, najbardziej znany jest jako filozof i historyk nauki. Wprowadził on rozróżnienie umysłów naukowych na typ angielski i francuski. Miało się ono wywodzić z tego, co Blaise Pascal określał jako zmysł życiowy (esprit de finesse) oraz zmysł geometryczny (esprit de géométrie). W nauce mielibyśmy uczonych, którzy tworzą różne modele, trzymając się danych doświadczalnych, nawet gdy wprowadza to pewien zamęt pojęciowy; drudzy to budowniczowie prostych teorii, koncentrujący się na ich konsekwencjach. Przykładem typu angielskiego miał być Michael Faraday, francuskiego – Isaac Newton. Rozróżnienie nie miało więc charakteru nacjonalnego, lecz analityczny. Duhem nie lubił brytyjskiej szkoły posługującej się pojęciem pola elektromagnetycznego i mocno atakował Jamesa Clerka Maxwella z pozycji filozoficznych. Oczywiście, żadna filozofia nie mogła na dłuższą metę zaszkodzić osiągnięciom Maxwella, filozofowie mówią swoje, a nauka idzie dalej, nawet bez ich pozwolenia.

Gdy wybuchła pierwsza wojna światowa, czyli wielka wojna (nikt jeszcze nie wiedział, że będzie następna), Duhem, za stary, aby iść na front, zaczął pisać i nauczać o niemieckiej nauce. Co pochlebnego można było powiedzieć o nauce wrogów? Duhem nie zamierzał ich chwalić, wprowadził i omówił pojęcie umysłu typu niemieckiego. Nauka niemiecka była formalistyczna, polegająca na wywodach logicznych nawet tam, gdzie to nie ma większego sensu. „Niemiec jest pracowity, skrupulatny, zdyscyplinowany i podporządkowany”. To geometra, brak mu subtelności. Przykładem Bernhard Riemann, twórca abstrakcyjnego ujęcia geometrii nieeuklidesowej. „Doktryna Riemanna jest ścisłą algebrą, gdyż wszystkie twierdzenia, jakie się w niej formułuje, są bardzo precyzyjnie wydedukowane z przyjętych postulatów; zaspokaja to zmysł geometryczny. Nie jest jednak prawdziwą geometrią, gdyż, wprowadzając swoje postulaty, wcale nie zatroszczyła się, aby wnioski z nich zgadzały się w każdym punkcie z osądami wyprowadzonymi z doświadczenia, które składają się na nasze intuicje dotyczące przestrzeni; w ten sposób przeczy ona zdrowemu rozsądkowi”. Był luty roku 1915, w listopadzie Albert Einstein zapisał równania pola grawitacyjnego w swej teorii. Od kilku lat ci, którzy śledzili rozwój fizyki, wiedzieli, że właśnie geometria riemannowska jest językiem matematycznym nowej teorii. Inaczej mówiąc: owa formalistyczna geometria, rzekomo ignorująca nasze pojęcie przestrzeni, okazała się nauką o fizycznej czasoprzestrzeni, jak najbardziej konkretną, podlegającą pomiarom. Duhem nie śledził zapewne grawitacyjnych prac Einsteina, ponieważ już wcześniejsza szczególna teoria względności nie zyskała w jego oczach aprobaty. Sądził, iż nie istnieje graniczna prędkość w przyrodzie, gdyż można sobie zawsze wyobrazić przebycie określonej drogi w dowolnie krótkim czasie, nawet gdy praktycznie nie potrafimy tego zrealizować. Przyjęcie zasady względności Einsteina, Minkowskiego i Lauego sprawia, że prędkość ponadświetlna staje się sprzecznością logiczną – twierdzi Duhem. „To, iż zasada względności dezorganizuje wszelkie intuicje wynikające ze zdrowego rozsądku, nie wywołuje u fizyków niemieckich żadnych wątpliwości. Przyjęcie jej oznacza siłą rzeczy obalenie wszystkich doktryn dotyczących przestrzeni, czasu, ruchu, wszystkich teorii mechaniki i fizyki; w tak wielkiej dewastacji nie ma niczego, co by nie mogło się podobać myśli germańskiej. Na terenie, który zostanie oczyszczony z dawnych poglądów, geometryczny zmysł Niemców pozwoli im całym sercem oddać się dziełu zbudowania na nowo całej fizyki, której fundamentem stanie się zasada względności”. Widzimy więc na tych przykładach, jak bardzo niefrancuska, a tym samym przykra dla zrównoważonego umysłu, była niemiecka nauka Einsteina.

Mamy drugi jeszcze przykład, jak wolna myśl narodowa kształtować może zdrową etnicznie fizykę. Autorem naszym jest Philipp Lenard, laureat Nagrody Nobla z fizyki eksperymentalnej, człowiek mimo to zgorzkniały i upatrujący odrodzenia nauki aryjskiej w wyzwoleniu się od wpływów żydowskich. Zdaniem Lenarda fizyka stworzona została niemal wyłącznie przez Aryjczyków: Francuzów w jego opowieści nie było, Anglicy, Szkoci i Skandynawowie to praktycznie Niemcy. Niemcami byli też wielcy eksperymentatorzy, jak Heinrich Hertz, odkrywca fal elektromagnetycznych, u którego Lenard pracował kiedyś jako asystent. Hertz nie był jednak „czystej krwi”: jego ojciec, prawnik i senator hanzeatyckiego miasta Hamburga, był Żydem przechrzczonym na luteranizm. Miało to złowieszcze, zdaniem Lenarda, następstwa, gdyż w ostatnich latach życia Hertz zajmował się zasadami mechaniki. W pracy tej „silnie wyszedł na jaw duch żydowski, który w jego wcześniejszych owocnych pracach pozostawał w ukryciu”. W 1936 roku ukazało się czterotomowe dzieło Philippa Lenarda, zatytułowane Deutsche Physik. Był to podręcznik zawierający zdrową pod względem narodowym część fizyki, a nie – jakby ktoś złośliwy mógł pomyśleć – to, co z fizyki zrozumiał Lenard. We wstępie do swego wiekopomnego dzieła skromny jego autor zwracał się do czytelnika: „«Fizyka niemiecka?» – zapytacie. Mógłbym równie dobrze powiedzieć fizyka aryjska albo fizyka ludzi typu nordyckiego, fizyka badaczy rzeczywistości, poszukiwaczy prawdy, fizyka tych, którzy stworzyli badania naukowe. «Nauka jest międzynarodowa i zawsze taka pozostanie» – zaczniecie protestować. (…) W rzeczywistości tak samo, jak wszystko, co tworzy człowiek, również nauka zdeterminowana jest przez rasę albo krew. (…) Należy powiedzieć tu nieco o «fizyce» narodu żydowskiego, ponieważ stoi ona w jaskrawym przeciwieństwie do fizyki niemieckiej (…) fizyka żydowska dopiero niedawno poddana została wyważonej ocenie publicznej. Pod koniec wojny, kiedy Żydzi w Niemczech zaczęli dominować i narzucać ton, wezbrała niczym powódź i ujawniły się jej wszystkie cechy. Znalazła szybko gorliwych zwolenników wśród wielu autorów krwi innej niż żydowska albo nie czysto żydowska”. Oczywiście, przykładem fizyki żydowskiej par excellence musiał być Albert Einstein, jego teorie „kompletnie zgrały się w zetknięciu z rzeczywistością. Najwyraźniej nie były nawet w zamierzeniu prawdziwe. Żyd pozbawiony jest całkowicie zrozumienia prawdy innej niż tylko powierzchowna zgodność z rzeczywistością, [prawdy], która nie zależy od ludzkiej myśli. (…) Zdumiewające jest, że prawda czy rzeczywistość nie wydają się Żydowi czymś szczególnym bądź różnym od nieprawdy, lecz są one równoważne jednej z wielu możliwych opcji teoretycznych”.

Lenard nie mógł przeboleć, że powstaje nowa fizyka, tworzona m.in. przez Einsteina, a popierana ku jego niezadowoleniu przez Maksa Plancka czy Maksa Lauego, późn. von Laue – niewątpliwych etnicznych Niemców. Poglądy wygłaszane przez Lenarda, choć sformułowane prymitywniej, są w istocie zbliżone do zarzutów Duhema. Dla obu teoria względności sprzeczna była ze zdrowym rozsądkiem, była wykwitem zbyt dużej skłonności do abstrakcji oderwanej od rzeczywistości, przerośniętym esprit de géométrie. Duhem widział w tym cechę niemiecką, Lenard natomiast żydowską.

„«Ja cierpię» – Lepiej tak powiedzieć, niż powiedzieć: «Ten krajobraz jest brzydki»” (Simone Weil).

Reklamy

Od zasady najdłuższego czasu do równań Maxwella (II)

Pokażemy, jak równania Maxwella wynikają z zasady najmniejszego działania dla pól relatywistycznych. Można powiedzieć, że klasyczny elektromagnetyzm jest najprostszą teorią relatywistyczną. Kolejność historyczna była odwrotna: najpierw równania Maxwella, a potem teoria względności. Teoria względności ma tu znaczenie fundamentu, ponieważ określa geometrię czasoprzestrzeni (przestrzeni Minkowskiego). Formalizm geometrii czasoprzestrzennej nie jest może oczywisty na pierwszy rzut oka, ale nawet na pierwszy rzut oka widać, że równania mają znacznie elegantszą formę.

Pokazaliśmy poprzednio, jak z zasady najmniejszego działania otrzymać dynamikę relatywistyczną cząstki. Należy w tym celu zdefiniować działanie tak, aby nie zależało od układu współrzędnych – tzn. było skalarem lorentzowskim: a więc funkcją nie zmieniającą się nie tylko przy obrotach, ale także przy transformacjach Lorentza (które geometrycznie są podobne do obrotów, tyle że mieszają ze sobą współrzędne przestrzenne i czasowe). Chcąc uwzględnić pole zewnętrzne, nie wystarczy teraz dodać funkcję będącą energią potencjalną cząstki. Okazuje się, że jeśli żądamy, aby nasze działanie było skalarem, to najprostsze pole zewnętrzne musi mieć cztery składowe: musi być czterowektorem A_{\mu} (zwanym czteropotencjałem). Równania ruchu, które uzyskuje się z zasady najmniejszego działania są wówczas równoważne wyrażeniu na siłę Lorentza w elektromagnetyzmie. Wielkością, która wchodzi do tego wyrażenia nie jest samo A_{\mu} , lecz jego pochodne:

F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu},

gdzie wprowadziliśmy krótsze oznaczenie: \dfrac{\partial}{\partial x^{\mu}}\equiv \partial_{\mu}.
Wielkości F_{\mu\nu} okazują się składowymi pola elektromagnetycznego: jest ich sześć, bo z definicji widać, że F_{\mu\nu}=-F_{\nu\mu} , a więc macierz 4×4 jest antysymetryczna i ma sześć składowych niezależnych. F_{\mu\nu}, zwane w czasach Einsteina Sechs-Vektor, jest tensorem, tzn. przy transformacjach zachowuje się tak jak iloczyn dwóch czterowektorów: x_{\mu}y_{\nu} . Oznacza to w szczególności, że przy transformacjach Lorentza pola elektryczne i magnetyczne będą się mieszać. Łatwo zauważyć, że powinno tak być. Weźmy parę spoczywających ładunków. Działają one na siebie siłą kulombowską. Jeśli będziemy je obserwować z układu odniesienia, względem którego oba ładunki się poruszają, będziemy mieli do czynienia z prądami, a więc i z polem magnetycznym.

Chcąc zbudować nie teorię cząstek w zadanym polu zewnętrznym, lecz równania, które musi spełniać pole, trzeba uogólnić nieco podejście. Zmiennymi będą teraz nie współrzędne cząstek, lecz wartości pól A_{\mu\nu}(x^{\rho}) . Zaznaczyliśmy wprost, że wartości pola są funkcjami położeń i czasu. Lagranżian musi teraz zależeć od wartości pola oraz jego pierwszych pochodnych: {\cal L}={\cal L}(A_{\mu}, \partial_{\nu}A_{\mu}). . To, co teraz robimy, jest uogólnieniem jednowymiarowwej teorii struny. Działanie musi przyjąć postać:

{\displaystyle S=\int {\cal L} dx^0dx^1dx^2dx^3\equiv \int {\cal L}d^4 x}

Całkujemy po czterowymiarowym obszarze w czasoprzestrzeni. Jaką postać musi przybrać działanie? Podobnie jak w przypadku struny spodziewamy się funkcji kwadratowej w A_{\mu} i jej pochodnych. Działanie powinno zawierać dwa wyrazy: jeden opisujący pola swobodne, drugi – ich oddziaływanie z naładowanymi cząstkami. Ten drugi wyraz już właściwie znamy z poprzedniej części. Gdy mamy wiele cząstek, należy oczywiście po nich wszystkich wysumować. Wrażenie to nie miało postaci całki czterowymiarowej, ale można je do takiej postaci przepisać, używając funkcji (dystrybucji) Diraca. Nie będziemy tego robić, ponieważ jest to ćwiczenie czysto rachunkowe. Zajmiemy się natomiast bliżej działaniem dla pól swobodnych. Lagranżian (ściśle mówiąc: gęstość lagranżianu) powinien być skalarem lorentzowskim. Najprostszym takim skalarem będzie wyrażenie:

{\cal L}=-\dfrac{1}{4\mu_0} F^{\mu\nu}F_{\mu\nu},

gdzie \mu_0 jest stałą fizyczną: przenikalnością magnetyczną próżni. Tensor z podniesionymi wskaźnikami ma niektóre wyrazy innego znaku niż ten z opuszczonymi: transformuje się on bowiem jak iloczyn dwóch czterowektorów x^{\mu}y^{\nu}. W praktyce oznacza to, że wyrazy z jednym wskaźnikiem czasowym zmieniają znak, pozostałe zaś są takie same. Żonglerka wskaźnikami potrzebna jest ze względu na rozróżnienie przestrzeni i czasu, które są w teorii względności nadal fundamentalnie różne. Jeśli w naszych sumach każdy wskaźnik górny jest sumowany z takim samym wskaźnikiem dolnym, to wyrażenie jest skalarem lorentzowskim. Iloczyn F^{\mu\nu}F_{\mu\nu} musi się zatem transformować, jak x^{\mu}y^{\nu}x_{\mu}y_{\nu}=(x^{\mu}x_{\mu})\cdot(y^{\nu}y_{\nu}),
a więc nie będzie zależeć od układu współrzędnych.

W dalszym ciągu postępujemy jak poprzednio, tzn. wyobrażamy sobie, że nasze pole A_{\mu} zmienia się na A_{\mu}+\delta A_{\mu} i obliczamy liniową część przyrostu działania:

{\displaystyle \delta S=\dfrac{1}{\mu_0}\int \partial_{\mu}F^{\mu\nu}\delta A_{\nu}d^4 x.}

Z zasady najmniejszego działania otrzymujemy więc cztery równania:

\boxed{\partial_{\mu}F^{\mu\nu}=0.}

Są to równania Maxwella, tzn. dokładnie ta ich para, w której występują prądy i ładunki (u nas one znikają). Możemy je równie dobrze zapisać w postaci:

\boxed{\partial^{\mu}F_{\mu\nu}=0.}

.
Pochodna ze wskaźnikiem na górze jest równa z definicji \partial^{\mu}\equiv\dfrac{\partial}{\partial x_{\mu}}.

Są to trywialne zmiany zapisu, z naszego punktu widzenia potrzebne do tego, by otrzymać prawidłowe znaki.
Równań Maxwella jest jednak osiem. Co stało się z drugą parą równań? Okazuje się, że mają one postać:

\boxed{\partial_{\mu}F_{\nu\rho}+\partial_{\rho}F_{\mu\nu}+\partial_{\nu}F_{\rho\mu}=0.}

gdzie trójka różnych wskaźników jest przestawiana cyklicznie: \mu\nu\rho\rightarrow \rho\mu\nu\rightarrow\nu\rho\mu.

Trzy wskaźniki spośród czterech możemy wybrać na cztery sposoby, otrzymujemy więc jeszcze cztery równania, a łącznie osiem – tyle, co trzeba.
Ten drugi zestaw równań spełniony jest tożsamościowo, jeśli pamiętamy, że F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.

Podsumujmy jeszcze krótko, co otrzymaliśmy: najprostszy lagranżian utworzony z pola A_{\mu} prowadzi do równań Maxwella. Ich postać narzucona jest więc w znacznym stopniu żądaniem zgodności z teorią względności, czyli mówiąc żargonem fizyki: kowariantności relatywistycznej. Oba zestawy naszych równań: ten otrzymany z działania oraz ten drugi, otrzymany z warunków symetrii, mają taką samą postać w każdym układzie odniesienia. Forma, w jakiej zapisaliśmy równania, niekoniecznie jest najwygodniejsza do praktycznych zastosowań, ale ma tę zaletę, iż widzimy na pierwszy rzut oka, że cała teoria jest kowariantna.

Można otrzymać z tych równań wniosek, że w pustej przestrzeni pola elektromagnetyczne wędrują z prędkością światła. Została ona tu wprowadzona jako przelicznik odległości czasowych na przestrzenne w teorii względności. Inaczej: prędkość c jest stałą wynikającą z historycznych zaszłości: mamy inne jednostki dla czasu i przestrzeni, choć Stwórca (jakby to ujął Einstein) nie widzi między nimi większej różnicy niż różnica znaku w niektórych wyrażeniach. Na tym fundamencie zbudowaliśmy teorię elektromagnetyzmu i przewiduje ona fale rozchodzące się z prędkością c, czyli dla Stwórcy jednostkową. Ludzie najpierw zetknęli się z tą wielkością, mierząc szybkość rozchodzenia się światła, stąd jej nazwa.

Jeszcze jedna uwaga na koniec. Lagranżian przez nas przyjęty może się nie wydawać absolutnie najprostszy. Mamy tu jednak jeszcze jedną symetrię, zwaną symetrią cechowania: jeśli do czteropotencjału dodać pochodną czasoprzestrzenną dowolnej funkcji \partial_{\mu}f zmiennych przestrzennych i czasu, to lagranżian oddziaływania z poprzedniej części zmieni się wprawdzie, ale niegroźnie, tzn. równania ruchu z poprzedniej części nie zmienią się, nie zmieni się też tensor pola F_{\mu\nu} (bo jest antysymetryczny, a drugie pochodne cząstkowe są przemienne). Dlatego do lagranżianu nie ma sensu dodawać takich wyrazów, jak A_{\mu}A^{\mu} – bo nie są one niezależne od cechowania. Symetria cechowania okazała się bardzo istotna. Najpierw wydawało się, że jest to pewna szczególna własność elektrodynamiki, z czasem jednak symetrię cechowania uogólniono na tzw. cechowanie nieabelowe. Chromodynamika i teoria oddziaływań elektrosłabych są takimi teoriami z symetrią cechowania – czyli cały Model Standardowy.

Zauważmy też, że podstawową wielkością jest czteropotencjał, choć w wielu przypadkach wygodniej jest posługiwać się polami elektromagnetycznymi.

Od zasady najdłuższego czasu do równań Maxwella (I)

Uczeni tacy, jak Albert Einstein, wywierają wpływ znacznie większy, niż by to wynikało z ich konkretnych osiągnięć. Jest to przypadek gdy całość (wkład do nauki) jest znacznie większa niż suma oddzielnych części (tzn. poszczególnych prac). Jednym ze skutków pracy Einsteina nad teorią względności stało się podkreślanie roli rozmaitych symetrii. Dziś właśnie od symetrii zaczyna się najczęściej formułowanie teorii. Praw fizyki oczywiście nie można wyprowadzić, mają one charakter postulatów. Można jednak pokazać często, dlaczego są one takie a nie inne. Kto zna wyrażenie na siłę w polu elektromagnetycznym oraz równania Maxwella, ten zastanawiał się może, dlaczego wyglądają one właśnie tak. Okazuje się, że jeśli żądamy, aby nasza teoria była relatywistyczna, to nie mamy zbyt wiele wyboru. Symetria w znacznym stopniu narzuca postać równań elektromagnetyzmu.

Zanim przejdziemy do przypadków bardziej skomplikowanych, rozważmy ruch cząstki w mechanice Newtona. Można opisać go, podając postać lagranżianu i korzystając następnie z zasady najmniejszego działania. Jaką postać powinien mieć lagranżian dla cząstki swobodnej, która z niczym nie oddziałuje? Lagranżian jest funkcją położenia i prędkości, czyli ogólnie biorąc, musi mieć postać

{\cal L}={\cal L}(x, y, z, v_x, v_y, v_z).

Działanie S możemy obliczyć dla każdego ruchu cząstki miedzy dwoma punktami. Uczenie mówiąc, działanie jest funkcjonałem (czyli funkcją funkcji) ruchu. Jeśli wybierzemy określoną krzywą i sposób jej przebiegania (kiedy wolniej, kiedy szybciej itd.), to działanie jest określone i dane całką:

{\displaystyle S=\int_{t_1}^{t_2}{\cal L}\, dt.}

W przypadku cząstki swobodnej lagranżian nie powinien zależeć od jej położenia, bo przestrzeń jest wszędzie taka sama. Nie powinien też zależeć od czasu, bo powtórzenie jutro takiego ruchu jak dziś powinno niczego nie zmieniać z fizycznego punktu widzenia. Także obrót układu współrzędnych nie powinien nic zmieniać, bo cząstka porusza się tak, jak się porusza, a nasz układ współrzędnych jest naszą sprawą i nie powinien wpływać na fizyczny ruch. Wynika z tego, że lagranżianem powinien być funkcją kwadratu prędkości v^2=v_x^2+v_y^2+v_z^2, ponieważ jest to wielkość, która się nie zmienia przy obrotach układu współrzędnych. Najprostszym takim lagranżianem będzie

{\cal L}=\dfrac{mv^2}{2}.

Wielkość m/2 to pewna stała, tutaj właściwie dowolna, wybraliśmy jej oznaczenie tak, aby zgadzało się z definicją masy. Zasada najmniejszego działania sprowadzi się w tym przypadku do stałości pędu: tak powinno być, skoro lagranżian nie zależy od położenia.

Zastanówmy się teraz, jak powinien wyglądać lagranżian swobodnej cząstki w szczególnej teorii względności. Kto czytał o Hermannie Minkowskim i czasoprzestrzeni, ten łatwo zgadnie, że tym razem lagranżian powinien być związany z interwałem czasoprzestrzennym. Dla dwóch bliskich zdarzeń wzdłuż ruchu cząstki interwał przyjmie następującą postać:

c^2\Delta \tau^2=c^2\Delta t^2-\Delta x^2-\Delta y^2-\Delta z^2.

Interwał czasoprzestrzenny jest odstępem czasu, jaki zmierzyłby zegar poruszający się z cząstką, inaczej mówiąc, jest odstępem czasu własnego. Nie zmienia się on przy obrotach układu współrzędnych oraz przy transformacjach Lorentza. Jak widzieliśmy poprzednio przy okazji paradoksu bliźniąt, najdłuższy czas odpowiada ruchowi prostoliniowemu. Zatem dla naszej cząstki działanie postaci

\boxed{{\displaystyle S=-mc^2\int_{\tau_1}^{\tau_2}\, d\tau,}}

ma wbudowane prawidłowe związki przestrzeni i czasu zachodzące w teorii względności (czyli w naszym świecie). Zasada najmniejszego działania stała się teraz zasadą najdłuższego czasu własnego (kto siedzi w miejscu, starzeje się najszybciej, spoczynek i ruch jednostajny prostoliniowy są teraz równoważne). Stałą wybraliśmy tak, żeby całość miała prawidłowy wymiar (działanie to energia razy czas). Cząstka swobodna powinna mieć stały pęd. Analogicznie jak w mechanice Newtona, możemy zapisać działanie za pomocą lagranżianu:

{\displaystyle S=-mc^2\int_{t_1}^{t_2}\, \sqrt{1-v^2/c^2}dt.}

Łatwo się przekonać, że składowe pędu są teraz równe

p_i=\dfrac{\partial {\cal L}}{\partial v_i}=\dfrac{mv_i}{\sqrt{1-\dfrac{v^2}{c^2}}},

gdzie wskaźniki i=1,2,3 numerują trzy osie współrzędnych kartezjańskich. Możemy też pokazać, że nasza teoria cząstki swobodnej sprowadza się do Newtonowskiej, gdy prędkość jest znacznie mniejsza od prędkości światła. Zastępując pierwiastek kwadratowy jego przybliżoną wartością, otrzymujemy

{\cal L}\approx -mc^2 \left(1-\dfrac{v^2}{2c^2}\right)=-mc^2+\dfrac{mv^2}{2},

pierwsza wielkość po prawej stronie jest stała, więc nie odgrywa roli przy szukaniu minimum, druga to dokładnie Newtonowska energia kinetyczna albo jak kto woli lagranżian cząstki swobodnej.

„So far, so good” – jak powiedział kiedyś John von Neumann, w środku wykładu o teorii komputerów w Princeton. Solomon Lefschetz, który słuchał tego wystąpienia, dodał głośno: „And so trivial”. Jak dotąd mamy świetną teorię cząstki swobodnej, prawdziwa fizyka zaczyna się jednak wtedy, gdy mamy oddziaływania. Następnym krokiem jest cząstka w polu zewnętrznym. Potem należałoby zapisać jeszcze ogólniejsze działanie dla układu cząstek i pól w czasoprzestrzeni. Można wówczas otrzymać równania ruchu cząstek w zadanym polu oraz równania pola wynikające z ruchu cząstek.

Najpierw więc pole zewnętrzne. W mechanice Newtonowskiej należy od lagranżianu cząstki swobodnej odjąć energię potencjalną:

{\displaystyle S=\int_{t_1}^{t_2}\left(\dfrac{mv^2}{2}-e\varphi(x,y,z,t) \right)\, dt.}

Zapisaliśmy energię potencjalną w postaci pewnej stałej e („ładunku”) razy wartość pola. Gdybyśmy powtórzyli ten sam zabieg w przypadku relatywistycznym, nasze działanie przestałoby być niezależne od układu współrzędnych, ponieważ teraz czas nie płynie już tak samo dla wszystkich. Potrzebujemy wyrażenia, które nie będzie się zmieniać nie tylko przy obrotach, ale także przy transformacjach Lorentza. Znamy jedno takie wyrażenie: c^2 t^2-x^2-y^2-z^2. Można je potraktować jako coś w rodzaju kwadratu długości czterowymiarowego wektora o składowych

x^{\mu}=(x^0,x^1,x^2,x^3)=(ct,x,y,z),

gdzie \mu=0,1,2,3. Jest to prototypowy czterowektor, uogólnienie wektora na czasoprzestrzeń. Wygodnie jest wprowadzić jeszcze drugi zestaw współrzędnych czterowektora, pisany z indeksem na dole:

x_{\mu}=(ct,-x,-y,-z).

Można za ich pomocą zapisać interwał czasoprzestrzenny w prostszej postaci jako następujące wyrażenie:

x_{0}x^{0}+x_1x^1+x_2x^2+x_3x^3\equiv x_{\mu}x^{\mu},

ten sam wskaźnik powtarzający się dwa razy oznacza sumowanie. Jest to tzw. konwencja sumacyjna Einsteina, on sam żartował, że to jego największe odkrycie matematyczne. Z pewnością upraszcza to zapis. Oczywiście, istnieją także inne czterowektory. Możemy np. podzielić przyrosty czterech zmiennych wzdłuż linii świata cząstki \Delta x^{\mu} przez odstęp czasu własnego (który się nie zmienia przy zmianie układu współrzędnych):

p^{\mu}=mu^{\mu}\equiv m\dfrac{dx^{\mu}}{d\tau}.

Musi to być także czterowektor. Jego składowe są równe:

p^{\mu}=\left(\dfrac{mc}{\sqrt{1-\dfrac{v^2}{c^2}}}, \dfrac{m\vec{v}}{\sqrt{1-\dfrac{v^2}{c^2}}}\right)=\left(\dfrac{E}{c},\vec{p}\right).

Jest to czterowektor pędu-energii. Jego kwadrat równa się

p_{\mu}p^{\mu}=\dfrac{E^2}{c^2}-\vec{p}^2=m^2c^2.

Kwadrat ten jest w każdym układzie współrzędnych taki sam. Najprostszym dodatkiem do działania dla cząstki swobodnej będzie następujące wyrażenie:

\boxed{\displaystyle{S_{int}=-e\int A_{\mu}u^{\mu} d\tau.}}

Zamiast potencjału całkowanego po czasie mamy tu cztery składowe pewnego pola A_{\mu} mnożone przez odpowiednie prędkości uogólnione u^{\mu}. Jest to uogólnienie iloczynu skalarnego na przypadek czterowymiarowy: wyrażenie podcałkowe jest skalarem, czyli nie zmienia się przy zmianie układu współrzędnych. Wariacja tego działania bierze się stąd, że inny ruch cząstki napotyka po drodze inne wartości pola A_{\mu} oraz stąd, że zmienia się prędkość:

{\displaystyle \delta S_{int}=-e\int \delta A_{\mu} \dfrac{dx^{\mu}}{d\tau}d\tau-e\int A_{\mu}\delta\left(\dfrac{dx^{\mu}}{d\tau}\right)d\tau.}

Po przekształceniach dostaniemy dla całości działania

{\displaystyle \delta S=\int\left(\dfrac{dp_{\mu}}{d\tau}-eF_{\mu \nu}\dfrac{dx^{\nu}}{d\tau}\right)\delta x^{\mu}d\tau,}

gdzie wprowadziliśmy oznaczenie:

F_{\mu\nu}\equiv \dfrac{\partial A_{\nu}}{\partial x^{\mu}}-\dfrac{\partial A_{\mu}}{\partial x^{\nu}}.

Ponieważ wariacja jest dowolna, więc znikać muszą wyrażenia w nawiasie, otrzymujemy w ten sposób następujący układ równań:

\boxed{\dfrac{dp_{\mu}}{d\tau}=eF_{\mu\nu}u^{\nu}.}

Ci, którzy uczyli się o potencjale skalarnym i wektorowym w elektrodynamice, zauważą, że sześć wielkości F_{\mu\nu} powinno mieć coś wspólnego z natężeniami pól elektromagnetycznych. Przyporządkowanie wygląda następująco:

F_{\mu\nu}=\begin{pmatrix}0 & E_x/c & E_y/c & E_z/c\\-E_x/c & 0 & -B_z & B_y\\  -E_y/c & B_z & 0 & -B_x \\ -E_x/c & -B_y & B_x & 0\end{pmatrix}.

Można pokazać, że równania te są równoważne wyrażeniu na siłę Lorentza:

\dfrac{d\vec{p}}{dt}=e(\vec{E}+\vec{v}\times\vec{B}).

Podsumowując: startując z zasady najmniejszego działania w wersji relatywistycznej, jako najprostsze możliwe pole zewnętrzne otrzymujemy sześcioskładnikowe pole elektromagnetyczne, które działa na cząstkę siłą Lorentza. Teoria względności prowadzi, można powiedzieć, niemal nieuchronnie do pól elektrycznych i magnetycznych. W drugiej części zobaczymy jeszcze, jak wyglądają równania dla sześciu składowych pola, czyli równania Maxwella.

 

 

Einstein, paradoks bliźniąt i związek nacjonalizmu ze zidioceniem (1911-1921)

W roku 1921 Philip Lenard, laureat nagrody Nobla, przedstawił własną teorię grawitacji. Nie byłoby w tym nic złego, choć od roku 1915 aż do dziś żadna nowa teoria względności nie okazała się potrzebna. Badanie alternatyw ma oczywiście swoje miejsce w nauce, lecz zazwyczaj jest to miejsce poślednie, ciekawostka dla ekspertów. Lenardowi przyświecał jednak zamysł polemiczny: pragnął bowiem zwalczać teorie niegodne Narodu Niemieckiego, a taką była teoria Einsteina. W dodatku jej twórca nie był wcale germańskim wojownikiem o blond włosach i niebieskich oczach:

Im bardziej «śmiały» okazuje się badacz natury, tym więcej miejsc w jego publikacjach nie wytrzymuje próby czasu; można to wykazać za pomocą przykładów z dalekiej i niedawnej przeszłości (szczególnie łatwo jest znaleźć te drugie). Z tego  względu śmiałość badacza natury nie zasługuje na tak wysoką ocenę, jak śmiałość wojownika. Gdyż ten ostatni przez swą śmiałość naraża własne życie, podczas gdy ten pierwszy znajduje zwykle wygodną wyrozumiałość oraz zapomnienie dla swoich niepowodzeń. Czasami odnosi się wrażenie, że owa przypisywana badaczowi natury «śmiałość» w istocie  polega na całkowicie wyzbytych skrupułów rachubach, iż obniżając poziom publikacji, nie poniesie się żadnej osobistej szkody. Taka śmiałość nie jest cechą niemiecką.

Słychać tu echa dziewiętnastowiecznej szkoły w fizyce, której przedstawiciele lubili utyskiwać na wszelkie teorie i zalecali trzymać się ściśle obserwacji. Wybitny skądinąd eksperymentator, Lenard nie był dość oryginalny, by stworzyć nową teorię zdolną do życia. Ale słychać też wojujący nacjonalizm. Przekonanie, że ktoś powinien zginąć za poglądy, bo inaczej są one nic niewarte, jest tyleż idiotyczne, co zgubne. Ludzie tacy jak Lenard popychali Niemcy (a może tylko dawali się nieść prądowi) w kierunku nowej wojny, która miała udowodnić ich wyższość rasową. Ostatecznie wykazała tylko, że są śmiertelni, podobnie jak ich ofiary. Rok 1921 zapowiadał już tendencje, które później się, niestety, wzmocniły. Można doszukiwać się tu przyczyn ekonomicznych, ale trudno zignorować też klimat poglądów objawiających się w sferze publicznej. m.in. w nauce. Świadomość określa byt, przynajmniej w polityce. Właściwie przez cały czas istnienia Niemiec weimarskich zaraza nacjonalizmu objawiała się gorączką sporów, argumentami rasowymi, poczuciem krzywdy, jaką rzekomo Niemcy doznały ze strony Europy. W kraju, który obok Wielkiej Brytanii, przodował w nauce, debaty naukowe często schodziły na poziom rasistowskich pyskówek. Niemiecka profesura przeważnie dostojnie milczała, milczała też w 1933 roku, kiedy jednym pociągnięciem zlustrowano ich kolegów i usunięto tych, którzy mieli złe pochodzenie.

Innym przeciwnikiem Einsteina był berliński fizyk Ernst Gehrcke, solidny eksperymentator w dziedzinie optyki, mający też ambicje teoretyczno-filozoficzne. Widział on w teorii względności przypadek masowej sugestii, której ulegli inni uczeni. Przejął się tą sprawą tak bardzo, że zaczął dokumentować wszelkie prasowe wzmianki o Einsteinie i robił to przez wiele lat.

«Klasyczna teoria względności» [cudzysłów Gehrckego – J.K.], będąca mieszanką wzajemnie  sprzecznych założeń, może posłużyć za interesujący przypadek masowej sugestii w fizyce, przynajmniej w krajach języka niemieckiego.

Warto zwrócić uwagę na słowo mieszanka (Gemisch): wiadomo, że to, co zmieszane, gorsze jest od czystego. Gehrcke powziął swą niechęć do teorii względności jeszcze przed pierwszą wojną i pozostał jej wierny do końca swego życia. Zabawnym zrządzeniem losu, jeden z tych „zahipnotyzowanych”, Max Planck, sprowadził do Berlina samego autora owej mieszanki, Alberta Einsteina, i to na wyjątkowo zaszczytne stanowisko, robiąc go przy okazji najmłodszym w dziejach członkiem Pruskiej Akademii Nauk. Einstein nawet próbował z Gehrckem dyskutować, ale w końcu dał spokój. Często prześladowali go różni obsesjonaci i wariaci, zwykle niegroźni.

Gehrcke, ale także i inni przeciwnicy teorii względności nie potrafili się pogodzić z tym, że czas przestał być absolutny, lecz wskazania zegarów mogły zależeć od ich wzajemnego ruchu. Podważali to często z powodów filozoficznych, np. dlatego że u Kanta nie ma miejsca na względność czasu i nieuklidesowość przestrzeni. Einstein nie przejmował się zbytnio Kantem i uważał, że efekty przewidywane przez teorię względności są mierzalne i w tym sensie jak najbardziej rzeczywiste.

Wyobraźmy sobie dwa układy (inercjalne) układy współrzędnych: jeden z nich umownie będzie dla nas układem spoczywającym (nieprimowanym), drugi porusza się względem niego z wielką prędkością v (primowany). Rozpatrzmy zegar spoczywający w drugim układzie. Jego dwa tyknięcia A i B oddziela pewien czas \tau. W poruszającym się układzie zachodzą one w tym samym punkcie. Te same dwa zdarzenia A i B możemy obserwować z układu spoczywającego. Czas między nimi jest teraz równy t, a odległość \Delta x=vt. W czasoprzestrzeni Minkowskiego, tzn. w świecie szczególnej teorii względności, dla dwóch dowolnych zdarzeń niezmienniczą (in. inwariantną) wielkością jest

c^2\Delta t^2-\Delta x^2=c^2\Delta t'^2-\Delta x'^2.

Znaczy to, że obserwatorzy związani z naszymi dwoma układami współrzędnych muszą otrzymać jednakową wartość tej wielkości.

c^2t^2-v^2t^2=c^2\tau^2\Rightarrow \tau=t\sqrt{1-\dfrac{v^2}{c^2}}.

Widzimy, że czas \tau jest krótszy niż t. Inne podejście do tego zagadnienia można znaleźć tutaj. Stąd pomysł, że gdybyśmy wysłali jeden zegar w podróż z wielką prędkością, a potem go z tą samą prędkością zawrócili, to po powrocie zmierzony przezeń odstęp czasu będzie krótszy. Ponieważ rzecz dotyczy nie jakiegoś wyimaginowanego czasu fizyków, ale tego, co można zmierzyć, konstruując na dowolnej zasadzie fizycznej przyrząd zwany zegarem, więc konkluzja dotyczy nie tylko czasomierzy, lecz np. pary bliźniąt, z których jedno wysyłamy w kosmiczną podróż, a drugie, mniej przedsiębiorcze, czeka w domu. Bliźniak podróżujący będzie po powrocie młodszy o czynnik \sqrt{1-{v^2}/{c^2}}. Można to narysować na diagramie czasoprzestrzennym.

Żółte linie pokazują linie świata światła. Poruszający się bliźniak (linia niebieska),  wciąż przebywa w stożku przyszłości względem zdarzenia polegającego na ich rozstaniu, linie kropkowane są liniami równoczesności dla brata poruszającego się w prawo i w lewo: zdarzenia wzdłuż tych linii podróżujący uważa za równoczesne; oczywiście linie równoczesności dla brata spoczywającego są równoległe do osi x).

Tutaj odległości wyrażone są w latach świetlnych, a czas w latach. Jak widać z obrazka, bliźniak poruszający się ma prędkość v/c=4/5. Podróż, która w układzie nieprimowanym zajmuje dziesięć lat, w układzie primowanym, czyli zmierzona przez podróżnika, zajmie w obie strony

\tau=10\sqrt{1-\dfrac{16}{25}}=6\mbox{ lat}.

Im bliższa prędkości światła jest prędkość podróżnika, tym silniejszy efekt. Einstein mówił o tej paradoksalnej naturze czasu w styczniu 1911 roku:

Gdybyśmy np. umieścili w pudełku żywy organizm i kazali mu się poruszać tam i z powrotem, tak jak omawianemu wyżej zegarowi, to byłoby możliwe, iż organizm ten, wracając do punktu wyjścia po dowolnie długiej podróży, zmieniłby się w  dowolnie małym stopniu, podczas gdy organizmy, które pozostawały w spoczynku w punkcie wyjścia, dawno  już zostałyby  zastąpione przez nowe pokolenia.

Gehrcke uważał, że wnioski Einsteina są fałszywe, bo skoro wszystko jest względne, to możemy równie dobrze uznać, iż to podróżujący bliźniak spoczywa, z czego by wynikało, że to on jest starszy. Naprawdę chodzi jednak o własność czasoprzestrzeni Minkowskiego (czyli naszej w małej skali): liniom prostym odpowiada zawsze dłuższy czas niż wszystkim innym. W przestrzeni euklidesowej najkrótszą linią łączącą dwa punkty jest prosta, w przestrzeni Minkowskiego, to linia najdłuższa w czasie.

W długim opowiadaniu Stanisława Lema pt. Powrót z gwiazd mamy następujący dialog:

— Tak — powiedziałem — i poczułem tremę, jakby od moich słów Bóg wie co miało zależeć. — Jestem… byłem pilotem. Ostatni raz byłem tu… nie przestrasz się!
— Nie. Mów!
Jej oczy były uważne i błyszczące.
— Sto dwadzieścia siedem lat temu. Miałem trzydzieści lat. Ekspedycja… byłem pilotem wyprawa do Fomalhaut. To jest dwadzieścia trzy lata świetlne. Lecieliśmy, w jedną i drugą stronę, sto dwadzieścia siedem lat czasu Ziemi i dziesięć lat czasu pokładowego.

Nie tylko Einstein, ale i inni wcześni relatywiści, jak Paul Langevin czy Arthur Eddington, dostrzegli tu możliwość podróży w czasie, ale tylko w przód. Lemowski Hal Bregg wraca na Ziemię, gdzie już dawno nie żyją jego bliscy i wszystko się bardzo zmieniło. Gdyby Lem pisał dzisiaj, mógłby jeszcze do kolorytu lokalnego dodać nacjonalizm, który przynajmniej w Europie wschodniej wciąż ma swoich zwolenników. Łatwiej przebudować drogi i domy niż ludzi.