Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s