John Maynard Keynes, Isaac Newton i Pitagoras z Samos (1694)

W roku 1936 na aukcji w domu Sotheby’s sprzedano dużą kolekcję rękopisów alchemicznych i religijnych Isaaca Newtona. Ani uniwersytet w Cambridge, ani British Museum nie były zainteresowane kupnem. Znaczną część papierów nabyli dwaj zapaleni kolekcjonerzy bibliofile: ekonomista John Maynard Keynes i filolog arabista i biblista Abraham Shalom Yahuda. Keynes przeżywa dziś renesans jako pierwszy ekonomista zalecający zwiększenie wydatków w celu pobudzenia gospodarki w kryzysie i uruchomienia mocy produkcyjnych. Współczesna wersja tego podejścia to quantitative easing – stosowane w ciągu ostatniej dekady praktyki skupowania obligacji przez bank centralny, dzięki czemu zamieniane są one na gotówkę, wpływającą do gospodarki. Keynes był postacią skomplikowaną i niełatwą do zaszufladkowania. Studiował matematykę w Cambridge, zajmował się filozofią, trochę chodził na wykłady z ekonomii, obracał się wśród artystów i pisarzy, znanych jako grupa z Bloomsbury (m.in. Virginia Woolf, E.M. Forster, Lytton Strachey), był wysokim urzędnikiem, dyrektorem Banku Anglii, prywatnym inwestorem, mecenasem sztuki, doradcą rządowym. Brał udział w wypracowywaniu traktatu wersalskiego po I wojnie światowej i był przeciwny nakładaniu na Niemcy wysokich reparacji (jak wiemy, Niemców upokorzono, co znacznie się przyczyniło do sukcesów nazizmu i następnej wojny). Bertrand Russell, logik matematyczny i filozof, pisał o nim:

Keynes miał najbystrzejszy i najklarowniejszy umysł, z jakim się zetknąłem. Kiedy się z nim spierałem, miałem uczucie, że walczę o życie i rzadko kiedy nie miałem potem wrażenia, iż okazałem się po trosze głupcem. Czasami sobie myślałem, że taka błyskotliwość jest nie do pogodzenia z głębią, lecz nie sądzę, żeby ten pogląd był uzasadniony. [Autobiography 1872-1914, koniec rozdz. 3]

Bertrand Russell, John Maynard Keynes, Lytton Strachey w roku 1915, National Portrait Gallery

Keynes już jako młody człowiek interesował się postacią Newtona i kupił pierwsze wydanie Principiów. W latach czterdziestych napisał, jak wyobraża sobie wielkiego uczonego.

Uważam, że Newton był inny, niż się zwykle wyobraża. Nie sądzę jednak, że był przez to mniej wielki. Był mniej zwyczajny, bardziej niezwykły, niż XIX wiek starał się go przedstawić. Geniusze są ludźmi wielce osobliwymi. (…) Od XVIII stulecia począwszy, zaczęto uznawać Newtona za pierwszego i największego uczonego nowożytnego, racjonalistę, kogoś, kto nauczył nas kierować się w myśleniu jedynie chłodnym i pozbawionym uprzedzeń rozumem. Ja nie patrzę na niego w taki sposób. Nie sądzę, by ktokolwiek, kto pochylił się nad zawartością tej skrzyni, którą Newton spakował, gdy ostatecznie opuszczał Cambridge w roku 1696, i której zawartość, choć częściowo rozproszona, dotarła do nas, mógł o nim myśleć w taki sposób. Newton nie był pierwszym przedstawicielem Wieku Rozumu. Był ostatnim z magów, ostatnim z Babilończyków i Sumerów, ostatnim z wielkich myślicieli patrzących na świat widzialny i duchowy tymi samymi oczyma, co ci, którzy zaczęli budować nasze intelektualne dziedzictwo niespełna 10 000 lat temu. Isaac Newton, pogrobowiec, dziecko bez ojca, urodzone w Boże Narodzenie 1642 roku, był ostatnim cudownym dzieckiem, któremu Trzej Magowie mogliby złożyć szczery i stosowny hołd. (…) Czemu nazywam go magiem? Ponieważ patrzył na cały wszechświat i na wszystko, co się w nim znajduje, jak na zagadkę, tajemnicę, która może zostać odczytana dzięki skupieniu czystej myśli na pewnych dowodach, pewnych mistycznych wskazówkach umieszczonych przez Boga w świecie, aby umożliwić ezoterycznemu bractwu coś w rodzaju polowania na filozoficzny skarb. Uważał, że owe wskazówki znaleźć można po części w świadectwach niebios i w budowie elementów (i to właśnie wywołuje fałszywą sugestię, jakoby był filozofem eksperymentalnym), ale po części także w pewnych dokumentach i tradycjach przekazywanych przez braci w jednym nieprzerwanym łańcuchu od pierwotnego zaszyfrowanego objawienia w Babilonii. Uważał wszechświat za kryptogram Wszechmogącego – podobnie jak sam zawarł odkrycie rachunku różniczkowego i całkowego w anagramie przekazanym Leibnizowi. Sądził, że dzięki czystej myśli, dzięki koncentracji umysłu, owa zagadka zostanie odsłonięta przed wtajemniczonymi. Udało mu się odczytać zagadkę niebios. I wierzył, że dzięki tym samym zdolnościom introspekcyjnej wyobraźni odczyta zagadkę Boskiej osoby, zagadkę przeszłych i przyszłych wydarzeń zapisanych u Boga, zagadkę elementów i ich utworzenia się z niezróżnicowanej pierwszej materii, zagadkę zdrowia i nieśmiertelności. Wszystko zostanie przed nim odsłonięte, jeśli tylko wytrwa aż do końca, będzie sam i nikt mu nie będzie przeszkadzał, nikt nie będzie wchodził do pokoju; jeśli będzie czytał, prze pisywał, sam wszystko sprawdzał, bez żadnych przerw, bez ujawniania czegokolwiek, bez ciągłego wtrącania się i obiekcji z zewnątrz, gdy z lękiem i dreszczem przypuszcza atak na owe rzeczy na poły nakazane, na poły zabronione, skrywając się w łonie Boga jak w łonie matki.

Kopia portretu Godfreya Knellera z 1689, uczony wcześnie posiwiał, mówił, że to skutek eksperymentów z rtęcią. (Wikipedia). Sam portret jest własnością prywatną i rzadko można go oglądać.

Keynes miał niewątpliwie rację, uważając Newtona raczej za epigona pewnej tradycji niż za prekursora nowej nauki (my patrzymy na niego jakby przez odwróconą lunetę, wiedząc, jak później eksplodowały nauki ścisłe). Bez wątpienia także był Newton postacią wymykającą się klasyfikacjom, zupełnie nieprzewidywalną i osobną, posiadającą swoją prywatną wizję wszechświata, którą rzadko i niechętnie dzielił się z innymi. Nie był ani zawodowym uczonym, ani nauczycielem, ani filozofem. Szukał wiedzy dla siebie i nie dzielił jej na naukową i nienaukową. Alchemia jako zagadka była dla niego nie mniej pasjonująca niż Apokalipsa św. Jana i zawarte w niej proroctwa. Dzięki katedrze Lucasa mógł robić, co chciał i niezbyt chętnie informował o tym świat zewnętrzny (czasem nawet nie mógł, bo np. jako członek Kolegium Św. Trójcy – Trinity College – nie mógł powiedzieć głośno, że Trójca św. jest fikcją wymyśloną przez Atanazego, niezgodną z tradycją i pismami wczesnego Kościoła). Nie potrzebował cudzych pochwał, niezbyt też chyba wierzył w to, że ktoś mógłby mu powiedzieć na temat matematyki czy fizyki coś istotnego, do czego sam już wcześniej nie doszedł. Rzadko ktoś go zaskakiwał w nauce, on wszystkich – niemal zawsze. Wszystkie właściwie prace trzeba było z niego wyduszać, niewiele go obchodziło, co inni sądzą na ich temat, rozmawiał niezdawkowo tylko z ludźmi zaprzyjaźnionymi, a i to dość rzadko.

Dobrym przykładem jego postawy jest kontekst, w jakim widział prawo ciążenia. Dla nas jest jego odkrywcą, można spokojnie założyć, że gdyby mały Isaac zmarł zaraz po porodzie (a był słabiutkim wcześniakiem i nikt nie wierzył, że przeżyje), to prawa powszechnego ciążenia nie znano by jeszcze długo, gdzieś do połowy XVIII wieku. On sam czuł się wprawdzie jego odkrywcą, ale wierzył, że przed nim musiano już to prawo znać. Podejrzewał, że zapewne znał je już Pitagoras.

W roku 1694 Newton zastanawiał się nad drugim wydaniem swoich Matematycznych zasad filozofii przyrody. Myślał o tym, aby prowadzić pewne komentarze – scholia do sformułowania praw ciążenia. (Ponieważ nie stosowano jeszcze zapisu algebraicznego, Newton podawał kolejno różne własności grawitacji: że jest proporcjonalna do masy jednego ciała, a także masy drugiego ciała i odwrotnie proporcjonalna do kwadratu odległości między nimi – nie było jednego wyrażenia matematycznego). Ostatecznie nie zdecydował się na publikację tych Scholiów klasycznych. Dają nam one jednak wgląd w jego sposób myślenia o historii. Musimy pamiętać, że Newton znał praktycznie całą klasyczną literaturę i filozofię, nie dlatego że cenił poezję, lecz ze swoistej ostrożności poznawczej, ze względu na elementy wiedzy, którą być może znali starożytni. Znał też praktycznie na pamięć pisma kilkuset Ojców Kościoła, eksperci przypuszczają, że był ostatnim takim erudytą. Do tego dochodzi jeszcze tradycja hermetyczna i alchemiczna. Jak się zdaje, nigdy nie zapominał tego, co raz przeczytał. Newton szukał w tych różnych tekstach zapomnianej albo specjalnie ukrytej wiedzy.

Jego własne poglądy naukowe przypominały starożytny epikureizm, znany głównie z poematu Lukrecjusza O naturze rzeczy. Nieskończony wszechświat, czy może nawet nieskończone zbiorowisko wszechświatów, wypełnionych atomami, które działają na siebie siłami ciążenia. Kłopot z Lukrecjuszem i epikureizmem był taki, że ich filozofia powstała z wyraźnym przesłaniem etycznym: nie potrzebujemy obawiać się bogów, bo oni z pewnością się nami nie zajmują, jest tylko materia, która podlega w przyrodzie wiecznemu recyclingowi, jak we śnie ekologa. Newton był natomiast fundamentalistą biblijnym i religijnym fanatykiem, dla którego nawet Kartezjusz był bezbożnikiem, gdyż w jego systemie świata nie było miejsca na Boga. Toteż uznał, że system Lukrecjusza został źle zrozumiany i jest pozostałością po jeszcze starszej wiedzy, którą np. posiadał Pitagoras. Dotyczyć miała nie tylko atomów i ich budowy (chodziło o to, że materia ma stałą gęstość, a jeśli np. woda ma mniejszą gęstość niż złoto, to znaczy, że w cząstkach wody znajduje się więcej próżni). Także prawo powszechnego ciążenia znane było Pitagorasowi albo uczonym przed nim. Ukryte było w koncepcji harmonii świata. Gdyby wyobrazić sobie, że odległość Słońce-planeta to długość struny, to chcąc wszystkie te struny doprowadzić do unisono, należałoby do nich zastosować prawo, odkryte przez Vincenza Galilei, wiążące siłę naciągu i długość: zamiast skracać strunę x razy możemy zastosować x^2 razy większą siłę ciążenia. W ten sposób wszystkie kosmiczne „dźwięki” miałyby tę samą wysokość.

Czy Newton naprawdę wierzył w ten pomysł? Zdawał sobie sprawę, że ściśle biorąc, nie ma w tekstach starożytnych nic o prawie wiążącym naciąg struny i kwadrat jej długości. Ale dopuszczał możliwość, że taka wiedza została z czasem zagubiona bądź zniekształcona, ponieważ przekazywano ją w postaci symboli zrozumiałych dla wtajemniczonych, aby trzymać tajniki nauki z dala od profanów. Tak działali pitagorejczycy, a w czasach nowożytnych – alchemicy. Sam Newton przypuszczał, że geometryczne ujęcie rachunku różniczkowego i całkowego, które odkrył, było w zasadzie wiedzą starożytnych. Czuł się więc bardziej kontynuatorem starożytnych niż swoich współczesnych. Nie należy uważać, że jest w tym jedynie dziwactwo wielkiego uczonego. To znaczy jest tu element osobistego dziwactwa, ale także i obce nam podejście do historii. Dla Newtona wiedza naukowa nie była konstrukcją historyczną, lecz zbiorem sekretów, które posiąść mogą wybrani (z wyraźną pomocą Bożą). Mity i podania uznawał za zaszyfrowane informacje, które można odkodować, jeśli złamie się klucz. Nie występuje w jego świecie coś takiego jak licentia poetica, jeśli nie wszystko da się zrozumieć i odczytać, to jest to skutek błędów w przekazie.

Reklamy

Hermann Minkowski i czasoprzestrzeń (1908)

We wrześniu roku 1908 na Zjeździe Niemieckich Przyrodników i Lekarzy  w Kolonii odczyt wygłosił Hermann Minkowski, matematyk z Getyngi. Powiedział tam:

Poglądy na przestrzeń i czas, które zamierzam tu rozwinąć, wyrosły z gruntu doświadczalno-fizykalnego. Tendencja ich jest radykalna. Odtąd przestrzeń w sobie i czas w sobie mają całkowicie stać się cieniami i tylko pewien rodzaj ich unii utrzymać ma samodzielność. („Wiadomości matematyczne”, t. 13, z. 5-6 (1909), s. 231.)

Chodziło w istocie o usunięcie sprzeczności miedzy dwiema wielkimi teoriami fizyki: mechaniką Newtona i elektrodynamiką Maxwella i Lorentza. Elektrodynamika przewidywała istnienie fal elektromagnetycznych, które w próżni rozchodzić się miały z prędkością światła c. Zbieżność wynikającej z teorii wartości z mierzoną prędkością światła była silnym argumentem za teorią Maxwella. Aby jednak wyznaczyć prędkość czegokolwiek, w tym impulsu świetlnego, musimy sprecyzować układ odniesienia, np. układ współrzędnych kartezjańskich. W jakim układzie odniesienia prędkość światła i innych fal elektromagnetycznych równa się dokładnie c? Sądzono powszechnie, że istnieje pewien nieruchomy ośrodek, eter, w którym rozchodzą się fale elektromagnetyczne, podobnie jak fale dźwiękowe w powietrzu albo innym ośrodku sprężystym. Eter długo zresztą pokutował w mowie potocznej jako „fale eteru”. Ponieważ Ziemia porusza się wokół Słońca, więc nie może zawsze spoczywać względem eteru, a skoro tak to obserwowana na Ziemi prędkość światła nie może być zawsze i w każdym kierunku taka sama. Wektorowe składanie prędkości wynika jednoznacznie z mechaniki Newtona, która miała za sobą dwa wieki sukcesów. Eksperymenty prowadzone przez wiele lat, głównie przez Alberta Michelsona, nie wykazywały żadnych efektów ruchu Ziemi: ani o żadnej porze roku, ani w piwnicy, ani w górach. Hendrik Lorentz wykazał, że można ocalić spójność fizyki za cenę wprowadzenia dość osobliwego założenia o skracaniu się ciał wzdłuż kierunku ruchu. Wprowadził też dodatkowy czas t', pewną matematyczną fikcję, która sprawiała, że równania elektrodynamiki nie zmieniały się w poruszającym się układzie odniesienia. Dopiero Albert Einstein rozciął ów węzeł gordyjski, stwierdzając, że pojecie eteru jest „zbędne”, nie istnieje żaden uprzywilejowany układ odniesienia. W każdym układzie odniesienia prawa fizyki: zarówno mechaniki, jak i elektrodynamiki mają taką samą postać (dokładnie w układzie inercjalnym, tzn. takim, który nie porusza się ruchem przyspieszonym, jak hamujący autobus bądź karuzela w ruchu). Oznacza to w szczególności, że prędkość światła zmierzona przez każdego obserwatora będzie równa c. Ceną za usunięcie sprzeczności była fundamentalna zmiana w pojęciu czasu. Jak pisał Minkowski w dalszym ciągu swego wykładu:

Lecz dopiero zasługą jest A. Einsteina wykazanie ścisłe, że czas jednego elektronu jest tak dobry jak drugiego, tj. że t i t' należy traktować jednakowo.

Einstein był młody i nie pracował na uniwersytecie w Getyndze, lecz w Biurze Patentowym w Bernie. Obie te okoliczności pozwoliły mu na przyjęcie radykalnego rozwiązania, że wyniki pomiaru czasu mogą zależeć od ruchu układu odniesienia. Do tej pory czas miał być absolutną miarą zmian w świecie fizycznym. Pogląd Newtona, zakorzeniony w jego metafizyce i teologii, stał się niewzruszony dla następnych pokoleń uczonych. Młodość oznaczała w tym wypadku pewną bezwzględność w stosunku do szacownych poprzedników. W zasadzie klocki pojęciowe zostały już uformowane przez Lorentza i Henri Poincarégo, Einstein ustawił je tylko w pozornie paradoksalny sposób, nie troszcząc się o wrażliwość starego pokolenia. Ustawienie to przetrwało do dziś. Z Lorentzem zresztą się później zaprzyjaźnił, Poincaré, przyznając mu naukową rangę, mocno się dystansował od jego ujęcia. Dlaczego pomogło mu, że nie pracował w Getyndze? Młody Albert porzucił gimnazjum w Monachium, nie mając jeszcze szesnastu lat, i wyjechał z Niemiec, zrzekł się też wkrótce obywatelstwa Królestwa Wirtembergii, a tym samym Rzeszy Niemieckiej. Nie cierpiał niemieckiego ducha posłuszeństwa, uważał, że w gimnazjum jest jak w wojsku. W rezultacie studiował na Politechnice w Zurychu, która była uczelnią gorszą niż uniwersytety niemieckie albo Uniwersytet Wiedeński. Prawie nie miał tam fizyki teoretycznej oprócz jednego wykładu Minkowskiego, gdzie omawiane były kwestie takie jak włoskowatość, a więc zupełnie już przestarzałe z punktu widzenia fizyka. Einstein nauczył się wszystkiego sam. Po studiach, ponieważ był dość pyskaty, nie znalazł miejsca na uczelni. Nie chcieli go nawet do prowadzenia ćwiczeń ze studentami, których na politechnice było dużo i które były tak samo wtedy, jak i dziś, niezbyt rozwijające intelektualnie. Urząd patentowy był pracą zastępczą. Przedtem różne uniwersytety z całej niemal Europy zdążyły odrzucić podania młodego absolwenta. Gdyby miał szczęście i zaczął pracować w Getyndze, wśród wybitnych matematyków i fizyków, trudniej byłoby mu zachować niezależność. Tamtejsza szkoła wywierała silne piętno na pracujących tam uczonych. Minkowski, który z Zurychu przeniósł się do Getyngi, miał niezbyt wysokie pojęcie o Einsteinie, który niewiele zresztą chodził na wykłady czysto matematyczne (choć stopnie z egzaminów miał dobre, uczył się w ostatniej chwili). Ujmując rzecz ogólnie: Pan Bóg wiedział, co robi, tworząc odrębne profesje matematyków i fizyków. David Hilbert i Felix Klein interesowali się fizyką, ale osiągnięcia, zarówno ich własne, jak i młodszych kolegów w tej dziedzinie były wybitne, a jednocześnie jakoś chybione. Powstawały prace eleganckie, lecz puste z punktu widzenia fizyka. Toteż lepiej, że Einstein nie musiał walczyć z presją tamtejszego środowiska. Możliwe zresztą, że by sobie poradził, bo miał wyjątkowo silny charakter. Sam zresztą mówił, że charakter ważniejszy jest od talentu, chodziło mu o to, żeby robić swoje, nie myśląc, że to się może nie udać. Fizyka w jego wydaniu to były niemal zawsze prace, które mogły się udać albo okazać kompletnym nieporozumieniem. Charakter potrzebny był mu do podejmowania ryzyka i nieprzejmowania się porażkami, których zawsze jest więcej niż sukcesów.

Wprowadzona przez Minkowskiego czasoprzestrzeń stała się trwałą częścią fizyki. Teoria względności, naruszając niezmienność czasu, wciąga go niejako do gry, pozwalając mu mieszać się z przestrzenią. Ze współczesnego punktu widzenia prędkość światła jest jedynie przelicznikiem między czasem a odległością. Stała c ma obecnie pewną wartość zadekretowaną przez międzynarodowe porozumienia. Żeby mieć te same jednostki na osiach możemy umieszczać ct oraz współrzędne x,y,z (będziemy też czasem pisać po prostu t zamiast $ct$). W czasoprzestrzeni punktami są zdarzenia o określonych współrzędnych (x, y, z, ct). Wygląda to tak dla czasoprzestrzeni (2+1)-wymiarowej:

Powiedzmy, że O jest zdarzeniem, które nas szczególnie interesuje. Zdarzenia, które mogły wywrzeć wpływ na O albo leżą na stożku przeszłości, jak Y – sygnał świetlny mógł dotrzeć do O. Stożek przeszłości, to wszystko, co widzimy: galaktykę w Andromedzie widzimy taką, jaka była dwa miliony lat temu, bo tyle czasu potrzebuje światło, aby do nas dotrzeć. Wszystkie zjawiska, które mogłyby wpłynąć na O leżą na stożku przeszłości albo wewnątrz niego, jak X. Analogiczną rolę pełni stożek przyszłości: leżą na nim albo wewnątrz niego wszystkie zdarzenia, na które O może (w zasadzie) mieć wpływ. Natomiast zdarzenia takie, jak A nie są w żadnym związku przyczynowym ani skutkowym z O. Struktura taka pozostaje niezmienna dla każdego obserwatora, choć inaczej on umiejscowi poszczególne punkty obrazka. To, co pozostaje nienaruszone, to wyżej opisane relacje: jeśli np. X było w stożku przeszłości względem O, to zawsze tak będzie, choć położenie X wewnątrz stożka może się różnym obserwatorom wydać różne.

Pokażemy teraz, jakie wartości różni obserwatorzy przypisują tym samym zdarzeniom. Fizyka powinna być niezależna od układu współrzędnych. Możemy np. obrócić układ współrzędnych w płaszczyźnie xy. Każdy punkt P=(x,y) w nowym układzie osi będzie miał nowe współrzędne (x',y').

\begin{cases}x'=x\cos\varphi-y\sin\varphi \\y'=y\cos\varphi+x\sin\varphi.\end{cases}

Transformacja ta nie zmienia odległości punktu P od początku układu współrzędnych, zatem:

x^2+y^2=x'^2+y'^2.

Łatwo sprawdzić, że wypisane wyżej równania spełniają ten warunek, po drodze musimy skorzystać z jedynki trygonometrycznej \sin^2\varphi+\cos^2\varphi=1.

Możemy też zmienić układ współrzędnych nieprimowany na poruszający się ruchem jednostajnym układ primowany.

Klasyczny i „zdroworozsądkowy” związek między współrzędnymi przyjmie teraz postać:

\begin{cases}x'=x-vt\\y'=y\\t'=t.\end{cases}

Jest to tzw. transformacja Galileusza. Prawidłową transformacją jest jednak tzw. transformacja Lorentza. Minkowski spojrzał na nią w sposób geometryczny, jak na przekształcenie, które zachowuje następującą wielkość (odtąd zachowujemy tylko x,t, współrzędne y,z nie zmieniają się, gdy ruch zachodzi w kierunku osi x):

x^2-t^2=x'^2-t'^2.

Widzimy tu analogię do obrotów, różny jest tylko znak. Wielkość ta zwana jest interwałem czasoprzestrzennym i tym się różni od kwadratu odległości, że może przyjmować znaki zarówno dodatnie, jak i ujemne. Nowe i stare współrzędne muszą leżeć na jednej gałęzi hiperboli albo na jednej linii prostej (stożek). Narysowaliśmy jeden z możliwych przypadków:

Możemy wprowadzić nowe współrzędne:

\begin{cases}x_{-}=x-t\\x_{+}=x+t.\end{cases}

Zgadujemy następującą postać transformacji Lorentza:

\begin{cases}x'_{-}=e^{\varphi}x_{-}\\x'_{+}=e^{-\varphi}x_{+}.\end{cases}

Łatwo zauważyć, że wielkość interwału czasoprzestrzennego jest zachowana (wzory skróconego mnożenia). Przy okazji widać też, że transformacji odwrotnej odpowiadać będzie parametr -\varphi, a przy złożeniu dwóch ruchów parametry się dodadzą. Nie wiemy tylko jeszcze, jaki jest sens parametru \varphi, powinien on być jakoś związany z prędkością jednego układu względem drugiego. Wracając do zwykłych współrzędnych x,t, otrzymamy

\begin{cases}x'=x\cosh\varphi-t\sin\varphi\\t'=t\cosh\varphi-x\sinh\varphi.\end{cases}

Prędkość układu primowanego, to prędkość ruchu punktu x'=0. Korzystając z tego, dostajemy

v=\dfrac{x}{t}=\dfrac{\sinh\varphi}{\cosh\varphi}=\mbox{tgh }\varphi.

Przy małych wartościach \varphi jest równe prędkości. Widzimy też, że prędkość mieści się w przedziale (-c,c). Dla tangensów hiperbolicznych istnieje wzór podobny, jak w zwykłej trygonometrii:

u=\mbox{tgh }(\varphi_1+\varphi_2)=\dfrac{\mbox{tgh }\varphi_1+\mbox{tgh }\varphi_2}{1+\mbox{tgh }\varphi_1 \mbox{tgh }\varphi_1}=\dfrac{v_1+v_2}{1+v_1 v_2}.

Itd. itp. Łatwo można dalej wyprowadzać wnioski z postaci transformacji Lorentza.

 

Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Emmy Noether i jej twierdzenie, część I (1918)

W fizyce XX wieku ogromną rolę odegrały zasady zachowania oraz symetrie. Zasady zachowania energii, pędu, momentu pędu itd. uważa się dziś za podstawowe prawa przyrody. Zarówno na gruncie fizyki klasycznej, jak i kwantowej, zasady zachowania związane są z symetriami układów fizycznych. Np. niezmienność w czasie praw fizycznych wiąże się z zasadą zachowania energii, symetria translacyjna wiąże się z zasadą zachowania pędu itp. Związek między symetriami a zasadami zachowania określa jedno z twierdzeń udowodnionych przez Emmy Noether. Najpierw powiemy trochę o postaci Emmy Noether, której ranga naukowa daleko wykracza poza twierdzenia znane każdemu fizykowi. W drugiej części przedstawimy szczególny przypadek twierdzenia Noether, obowiązujący w mechanice punktów materialnych. Pamiętać jednak trzeba, że twierdzenie Noether stało się ważną częścią współczesnej fizyki w ogóle, a nie wyłącznie mechaniki.

W roku 1935, gdy Emmy Noether niespodziewanie zmarła w Stanach Zjednoczonych wskutek powikłań pooperacyjnych, wspomnienie pośmiertne o jej osiągnięciach znalazło się w liście Alberta Einsteina do „New York Timesa”. Najwybitniejszy z naukowych uchodźców niemieckich uhonorował w ten sposób pierwszą tej rangi matematyczkę w historii. Mimo że w latach 1915-1933 pracowała ona w Getyndze, najlepszym wówczas ośrodku matematycznym świata, była znana wśród kolegów, miała uczniów, doktorantów itd., nie udało się jej nigdy uzyskać pełnej profesury, i to pomimo wsparcia Feliksa Kleina oraz Davida Hilberta. Opór przed powołaniem kobiety na katedrę był zbyt silny. W tym czasie w Niemczech profesurę z fizyki eksperymentalnej przyznano tylko jednej kobiecie: Lise Meitner w Berlinie, który uchodził za bardziej postępowy. Pierwszą katedrę matematyki objęła w Niemczech w 1957 r., a więc w zupełnie innych czasach, Ruth Moufang. Noether pracowała przez większą część życia za darmo albo otrzymując niewielkie pieniądze za prowadzenie zajęć na uczelni. Żyła skromnie, nie była zamożna, ale i nie biedna, jej ojciec Max był profesorem matematyki w Erlangen. Emmy miała także braci utalentowanych w kierunkach ścisłych, choć ostatecznie okazało się, że to ona była najwybitniejszym uczonym w rodzinie. Emmy nie uczyła się nigdy w szkole średniej, maturę zdała eksternistycznie. Także na uniwersytecie, w Erlangen i w Getyndze, miała jedynie prawo słuchania wykładów, bez możliwości formalnego ukończenia studiów. Co ciekawe, jej talent matematyczny rozwinął się dość późno. Swój przyzwoity i bardzo pracochłonny doktorat uważała później za nieistotny (obliczyła w nim postać 331 kowariantnych form czwartego stopnia trzech zmiennych). Było to rozszerzenie pracy opiekuna jej doktoratu Paula Gordana. Ówczesna algebra sprawiała na postronnych widzach wrażenie dziedziny zupełnie oderwanej od zastosowań, choć prawie nigdy nie da się tego uczciwie stwierdzić o żadnym dziale matematyki. Prace Gordana i jeszcze starszego Alfreda Clebscha zawierają np. znane w fizyce kwantowej współczynniki Clebscha-Gordana. Współczynniki te są więc kilkadziesiąt lat starsze niż sama mechanika kwantowa.

Fotografia ok. 1915 r. (http://physikerinnen.de)

Już po trzydziestce trafiła do Getyngi z inicjatywy Kleina i Hilberta. Zajęła się tam kwestią symetrii oraz zasad zachowania. Udowodniła dwa słynne dziś twierdzenia na ten temat. Wówczas nie były one tak znane, choć ich udowodnienie miało spore znaczenie dla ogólnej teorii względności. Hilbert zajmował się tą teorią równolegle do Einsteina, wyraźnie z się z nim ścigając. Był to skutek wykładów Einsteina w Getyndze w połowie roku 1915. David Hilbert zapalił się do tego podejścia, jednak jego cel był inny niż Einsteina: pragnął bowiem zaproponować teorię wszystkiego, obejmującą także materię. Ten ambitny zamysł był zdecydowanie przedwczesny, lecz jesienią roku 1915 Hilbert deptał Einsteinowi po piętach. Stanowiło to przykład szeroko wtedy znanego zwyczaju matematyków z Getyngi, że bez większych skrupułów wchodzili w tematykę prac innych kolegów. Nazywano to złośliwie „nostryfikacją”. Einstein o mały włos nie padł ofiarą takiej nostryfikacji. Wielu historyków sądziło zresztą, że to Hilbert pierwszy napisał równania pola ogólnej teorii względności. Tak jednak nie było i sam Hilbert nigdy nie zgłaszał w tej kwestii żadnych roszczeń. Dziś wiemy zresztą, że nie miałby do tego podstaw. Równania pola ogólnej teorii względności sformułował Einstein w listopadzie 1915 roku. Stosunki obu uczonych, przez chwilę dość napięte, wróciły potem do poprzedniego przyjaznego tonu. Hilbert, a później i Klein, interesowali się dość żywo teorią Einsteina, szczególnie kwestią zasady zachowania energii-pędu. Z pracy Noether wynikało, że tensor Einsteina G oraz tensor energii-pędu T muszą spełniać związek {G^{\mu\nu}}_{;\nu}=0={T^{\mu\nu}}_{;\nu}. Dopiero później zauważono, iż włoski geometra Luigi Bianchi już w 1902 ogłosił tożsamości nazwane dziś jego imieniem (nb. tożsamości te znał już Gregorio Ricci dwie dekady wcześniej), z których fakt powyższy wynika. Pokazuje to spory zamęt, jaki istniał nie tylko w samej nowej fizyce, ale także i w stosowanej do niej nienowej matematyce, która jednak nie była znana nawet największym ówczesnym matematykom (wyjątkiem był tu Tullio Levi-Civita).

Największe osiągnięcia Emmy Noether przypadają na lata dwudzieste. Stała się ona ważną postacią w rozwoju nowoczesnej algebry abstrakcyjnej, w której bada się struktury określone za pomocą aksjomatów, niezależnie od konkretnej reprezentacji. Prace te prowadzone były w duchu Hilberta, który od dawna zabiegał o ścisłą aksjomatyzację zarówno matematyki, jak i fizyki. W fizyce podejście tego rodzaju niezbyt się przyjęło, w matematyce szukanie ogólniejszych struktur jest często skuteczną metodą atakowania szczegółowych problemów, tak np. udowodniono wielkie twierdzenie Fermata. Emmy Noether prowadziła w Getyndze słynne z czasem wykłady. Początkowo miały one formę stałego zastępstwa za Davida Hilberta. Chodziło o ominięcie formalnej trudności: Noether nie miała prawa nauczania. Wykłady te przyciągały niezbyt liczne, lecz ważne grono młodych badaczy. W formie przypominały raczej głośne myślenie na temat matematyki niż uporządkowane rozdziały podręcznika. Jednak drugi tom znanej wówczas monografii Moderne Algebra Bartela van der Waerdena w znacznym stopniu był opracowaniem idei z wykładów Noether w Getyndze. W wieku pięćdziesięciu lat osiągnęła niemal wszystko, czego może sobie życzyć uczony: miała liczne publikacje, wielu uczniów, którzy rozwijali jej idee (chętnie się nimi dzieliła i nie zgłaszała roszczeń do pierwszeństwa, nawet gdy się jej ono należało), dwa razy zaproszona była do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała „Mathematische Annalen”. Nie była tylko wciąż profesorem, choć jej młodszy i nie tak wybitny brat, Fritz, uzyskał katedrę na Politechnice Wrocławskiej (wówczas Technische Hochschule) już w 1922 roku.

Na dworcu w Getyndze jesienią 1933 r. (http://physikerinnen.de)

Aż nadeszła katastrofa roku 1933. Oczywiście, większość Niemców uznawała ją w tamtej chwili za zwycięstwo albo przynajmniej za krok w dobrym kierunku. Społeczeństwo, karmione od dziesiątków lat rasistowskimi bredniami o wyższości Niemców nad Żydami, nie protestowało, gdy władze polityczne wyciągnęły wnioski z tych nauk i na początek wyrzuciły wszystkich Żydów ze stanowisk państwowych, w tym z uniwersytetów. Emmy Noether nie interesowała się polityką. Nie reagowała nawet, gdy któryś z jej studentów przyszedł na wykład w brunatnej koszuli. Teraz jednak straciła swą i tak mało znaczącą posadę i nie mogła uczyć. Jak wielu rozsądnych ludzi, miała nadzieję, że to szaleństwo skończy się jak zły sen. Znalazła pracę w Stanach Zjednoczonych, w roku 1934 odwiedziła Niemcy jako uczona z zagranicy. Żona jej współpracownika, profesora z Hamburga, Emila Artina wspominała:

Rzeczą, która najbardziej zapadła mi w pamięci, była jazda metrem w Hamburgu. Zabraliśmy Emmy spod Instytutu i natychmiast oboje z Artinem zaczęli rozmawiać o matematyce. Chodziło wtedy o teorię ideałów (Idealtheorie) i mówili o pojęciach takich, jak Ideal, Führer, Gruppe i Untergruppe, po chwili cały wagon zaczął nadstawiać uszu. Byłam śmiertelnie przerażona, myślałam, Boże, za chwilę ktoś nas aresztuje. Był to już rok 1934, a Emmy, nie zwracając na nic uwagi, mówiła bardzo głośno i w podnieceniu coraz głośniej i głośniej, i co chwila pojawiały się słowa Führer oraz Ideal. Była pełna temperamentu i zawsze mówiła bardzo szybko i bardzo głośno.

Terminologia matematyczna nałożyła się tu na partyjną nowomowę, której Emmy zapewne nie znała albo nie zwracała na nią uwagi jako na bełkot. Żona Artina była Żydówką i miała wszelkie powody, by się bać. Rok rządów nazistów pogłębił różnice miedzy wolnym światem a narodowo-socjalistycznym obłędem, przy czym rewolucja dopiero się rozkręcała. Trzy lata później także Artin musiał wyjechać, bo już nawet żona Żydówka nie mogła być tolerowana w czystym rasowo państwie. Emmy zlikwidowała tamtego lata swoje mieszkanie w Getyndze i zrozumiała, że nie wróci szybko do Niemiec. Najbardziej gorzkim aspektem rasistowskiego obłędu było to, że ludzie tacy jak Noether czuli się zawsze Niemcami, nie byli w żaden sposób ludnością napływową, od wieków mieszkali w Niemczech, od XIX wieku tworzyli w coraz większym stopniu ich naukę i kulturę. Żeby nie kończyć myślami o zniszczeniu i nienawiści, przytoczmy słowa Einsteina ze wspomnianego listu do NYT:

Istnieje, na szczęście, mniejszość złożona z tych, którzy wcześnie zdali sobie sprawę, że najpiękniejsze i przynoszące najwięcej satysfakcji przeżycia dostępne człowiekowi nie pochodzą ze świata zewnętrznego, lecz z rozwoju indywidualnych uczuć, myśli i działań. Prawdziwi artyści, badacze i myśliciele zawsze byli osobami tego rodzaju. I choćby życie takich jednostek upłynęło całkiem niepozornie, to jednak owoce ich wysiłków są najcenniejszym dziedzictwem każdego pokolenia dla swych następców.

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

Einstein nie pisał takich tekstów bez zastanowienia. Zawsze przemawiał do niego ideał życia odosobnionego, niemal klasztornego, i poświęconego spokojnemu namysłowi nad światem. Niezbyt lubił błyszczeć, a przynajmniej szybko go to nudziło. Wielki rozgłos, jaki go otaczał, przyjmował raczej z rozbawieniem, jako coś w istocie niepoważnego i nieco wstydliwego. Przyjaźnił się zresztą nie tylko z wybitnymi uczonymi, ale także z różnego rodzaju dziwakami i oryginałami, cenił osobowość, nie lubił ludzi nijakich. O skali osiągnięć Emmy Noether wiedział zapewne od Hermanna Weyla, który mógł to kompetentnie ocenić. Jego podziw dla matematyki narastał z czasem; w latach trzydziestych w jego pracy nie odgrywało już żadnej roli eksperyment, musiał więc kierować się względami formalnymi, czysto matematycznymi. I rzeczywiście, każdy niemal rodzaj matematyki, prędzej czy później znajduje zastosowanie w naukach o przyrodzie czy świecie społecznym.