J.J. Thomson: Jak powstaje fala elektromagnetyczna? (1903)

Pole elektryczne spoczywającego ładunku zachowuje się tak, jak linie prędkości cieczy (nieściśliwej). Oznacza to, że linie sił pola biegną radialnie z ładunku punktowego i każdą zamkniętą powierzchnię otaczającą nasz ładunek przecina tyle samo linii sił. Strumień pola elektrycznego jest taki sam przez każdą powierzchnię zamkniętą (taka sama objętość cieczy przepływa w jednostce czasu przez każdą powierzchnię: ciecz nie gromadzi się ani nigdzie nie ucieka, np. w czwarty wymiar, ile wpłynęło przez jedną powierzchnię, tyle musi wypłynąć przez drugą).

maxwell fluid

Zatem natężenie pola E razy pole powierzchni sferycznej o promieniu r jest stałe:

E4\pi r^2=\dfrac{q}{\varepsilon_0}\Rightarrow E=\dfrac{q}{4\pi\varepsilon_0 r^2} \mbox{(*)}.

Inaczej mówiąc, kwadrat odległości w prawie Coulomba bierze się stąd, że pole powierzchni sfery rośnie jak r^2. W równaniach tych q oznacza ładunek, \varepsilon_0 stałą informującą o wielkości sił elektrycznych, jest to tzw. przenikalność próżni i jest stałą fizyczną. Najczęściej jednak mamy do czynienia nie z polami elektrostatycznymi, lecz z falami elektromagnetycznymi: dzięki tym falom widzimy na ekranie ten tekst, dzięki tym falom możemy rozmawiać przez komórkę albo obserwować wszechświat, można śmiało stwierdzić, że większość naszej jednostkowej i cywilizacyjnej wiedzy zdobyliśmy dzięki falom elektromagnetycznym.

Spójrzmy nieco inaczej na rysunek wyżej. Gdyby punkt w środku oznaczał Słońce (albo jakąś inną gwiazdę, albo dowolne źródło o symetrii kulistej), a linie były promieniami światła, to przez każdą powierzchnię zamkniętą w jednostce czasu powinna przechodzić taka sama ilość energii, inaczej mówiąc: moc przepływająca przez każdą powierzchnię byłaby taka sama – wszechświat jest dość pusty i praktycznie cała energia przepływa dalej (gdybyśmy zresztą wyobrazili sobie planetę między dwiema powłokami, to po pierwsze byłaby ona malutka w porównaniu do gwiazdy, a więc pochłaniałaby niewiele mocy, a poza tym wysyłałaby tyle watów, ile pochłania – inaczej planeta gwałtownie stygłaby albo się ogrzewała.) Równanie zapisane wyżej można by powtórzyć z niewielkimi zmianami: jeśli I to moc na jednostkę powierzchni (W/m2), czyli natężenie promieniowania gwiazdy, to możemy napisać:

I4\pi r^2=P\Rightarrow I=\dfrac{P}{4\pi r^2}.

P jest mocą gwiazdy [W], czyli ilością energii wysyłanej przez nią w jednostce czasu. Zatem natężenie fali powinno maleć jak 1/r^2, ponieważ pole powierzchni sfery rośnie jak r^2. Natężenie fali jest dla wszystkich rodzajów fal, nie tylko elektromagnetycznych, proporcjonalne do kwadratu amplitudy. Mamy zatem

I\sim E^2\sim \dfrac{1}{r^2}\Rightarrow E\sim \dfrac{1}{r}.

Pole elektryczne fali powinno być odwrotnie proporcjonalne do odległości od źródła, a nie do jej kwadratu, jak w przypadku statycznym (*). Możemy teraz zrozumieć, czemu pole elektrostatyczne trudniej zaobserwować: maleje ono bowiem z odległością szybciej niż pole fali elektromagnetycznej. Jest i drugi powód: atomy zawierają tyle samo ładunku ujemnego co dodatniego i w efekcie pola elektrostatyczne niemal się równoważą – niemal, bo ładunki dodatnie (jądra) są średnio biorąc w innym miejscu niż ujemne (elektrony), wypadkowe pole maleje w rezultacie jeszcze szybciej, z sześcianem odległości. Siły elektrostatyczne są bardzo istotne dla wiązań atomów, czyli na niewielkich odległościach.

Jak można z pola spoczywającego ładunku otrzymać pole fali elektromagnetycznej? Zacznijmy od jednostek. Skoro dla pola statycznego E maleje jak 1/r^2, to aby otrzymać zależność 1/r, musimy we wzorze (*) znaleźć dodatkowy czynnik w mianowniku o wymiarze długości (m). Pole fali elektromagnetycznej związane jest z ruchem przyspieszonym ładunku, logicznie jest przypuścić, że powinno być proporcjonalne do jego przyspieszenia a (m/s2). Mamy więc w liczniku metry podzielone przez sekundy do kwadratu. A chcielibyśmy mieć same metry, i w mianowniku. Możemy wykorzystać w tym miejscu drugą stałą fizyczną elektromagnetyzmu, tzn. prędkość światła c (pierwsza to \varepsilon_0). Jeśli przyspieszenie podzielimy przez c^2, dostaniemy taki wymiar, jak potrzeba:

\left[\dfrac{a}{c^2}\right]=\dfrac{m/s^2}{m^2/s^2}=\dfrac{1}{m}.

W wyniku tego zgadywania, zwanego uczenie analizą wymiarową, możemy przypuszczać, że pole elektryczne fali wytwarzanej przez ładunek q powinno mieć postać:

E=\dfrac{qa}{4\pi\varepsilon_0 c^2 r}f(\theta).

Włączyliśmy tu jakąś nieznaną funkcję kąta miedzy przyspieszeniem a promieniem wodzącym. Kąty są bezwymiarowe, więc nie zmienia to naszych wniosków. Zobaczymy, jak można zrozumieć mechanizm wytwarzania fali i ostatni wzór. Rozumowanie poniżej pochodzi od J.J. Thomsona, który w roku 1903 miał wykłady w Yale, gdzie je przedstawił wśród wielu innych rozważań. Fale elektromagnetyczne znane były od kilku dziesięcioleci, wkład Thomsona jest tu czysto dydaktyczny (Główną jego naukową zasługą było odkrycie elektronu, za które otrzymał Nagrodę Nobla w 1906 roku.) Rozumowanie to było zresztą wielokrotnie powtarzane przez autorów podręczników, m.in. w kursie berkeleyowskim, znanym i w Polsce.

Punktem wyjścia jest fakt, że pole elektryczne ładunku poruszającego się jednostajnie wygląda w każdej chwili tak samo jak pole ładunku spoczywającego (*) – chcąc zmierzyć pole w danym punkcie i w danej chwili, musimy wstawić do tego wzoru odległość miedzy punktem a ładunkiem obliczoną właśnie w owej chwili. Zakładamy tu, że prędkość jest niewielka w porównaniu z prędkością światła, jest to założenie do uniknięcia, choć sam Thomson niezbyt dobrze rozumiał ten punkt – było to jeszcze przed teorią względności. W każdym razie w większości przypadków, oprócz akceleratorów cząstek albo kosmicznych katastrof, założenie to jest spełnione.

Impuls typu fali elektromagnetycznej uzyskamy, gdy nasz ładunek zmieni prędkość. Wyobraźmy sobie np., że w pewnej chwili t=0 ładunek zaczął hamować. Oczywiście nie mógł stanąć w miejscu, przez pewien krótki czas \tau poruszał się z przyspieszeniem, a potem już był nieruchomy. Jak powinny wyglądać linie sił w chwili T\gg \tau? Wiemy, że informacja nie może przenosić się szybciej niż c, zatem na zewnątrz sfery o promieniu cT=OR nic jeszcze nie wiadomo, że ładunek się zatrzymał i linie sił zbiegają do punktu O’, w którym powinien się on znaleźć, gdyby nadal poruszał się jednostajnie. W pobliżu ładunku, w odległościach mniejszych niż c(T-\tau)=OP, już wiadomo, że ładunek jest nieruchomy: linie sił zbiegają się w punkcie O. Linie sił pola elektrycznego muszą być ciągłe, nie mogą się zaczynać ani kończyć w punkcie przestrzeni, gdzie nie ma ładunku. Łącząc obraz sprzed hamowania i po hamowaniu uzyskamy co następuje:

electricitymatte00thombw

(Linia sił OPP’Q, oryginalny rysunek z wykładów Thomsona, Electricity and Matter, New Haven 1912)

purcell

(Linia sił to ABCD, ta sama sytuacja w podręczniku Purcella i Morina z roku 2013)

Na pierwszym rysunku nie zaznaczono drogi hamowania, na drugim jest ona zaznaczona, ale tak, że widać, iż jest znacznie krótsza niż droga v_0 T. Do pola radialnego doszło pole skierowane poprzecznie, prostopadle do promienia wodzącego. Właśnie to pole poprzeczne zmienia się jak 1/r. Nie wiem, czy dziś łatwiej się uczyć niż przed wiekiem, z pewnością lepsze są rysunki i liczniejsze źródła wiedzy. Trzymając się oznaczeń drugiego rysunku, widzimy, że stosunek pola poprzecznego E_{\theta} do radialnego E_r równy jest

\dfrac{E_{\theta}}{E_{r}}=\dfrac{v_0 T\sin\theta}{c\tau}=\dfrac{v_0}{\tau}\dfrac{cT}{c^2}\sin\theta=a\dfrac{r}{c^2}\sin\theta.

Widzimy, że wraz z rosnącą odległością stosunek obu składowych pola jest coraz większy: daleko od źródła zostaje jedynie pole poprzeczne. Wstawiając za E_{r} wzór (*), otrzymamy pole promieniowania.

E=\dfrac{qa\sin\theta}{4\pi\varepsilon_0 c^2 r}.

Jak widać, f(\theta)=\sin\theta. Ostatnia zależność oznacza, że tylko przyspieszenie ładunku prostopadłe do promienia wodzącego jest źródłem fali. Jeśli patrzymy na poruszający się ładunek i nie widzimy ruchu (bo porusza się on wzdłuż linii widzenia), nie ma promieniowania. Wyrażenie dla E_{\theta} słuszne jest dla dowolnego ruchu nierelatywistycznego. W antenach ładunki oscylują, zatem przyspieszenie zmienia się okresowo, a tym samym zgodnie z naszym wzorem zmienia się okresowo także pole elektryczne. Mamy rozchodzącą się falę elektromagnetyczną. Nie zajmowaliśmy się tu polem magnetycznym, które jest proporcjonalne do pola elektrycznego i prostopadłe do niego, a także do kierunku rozchodzenia się fali.

Uwaga nt. kątów: Natężenie fali elektromagnetycznej będzie zawierało kwadrat pola, a więc \sin^2\theta. Oczywiście, jeśli źródło złożone jest z wielu ładunków, których przyspieszenia rozmieszczone są przypadkowo i izotropowo (jak w przypadku gwiazdy), wypadkowa energia będzie niezależna od kierunku, zostanie tylko zależność od odległości.

Uwaga nt. stałych: Czasem używa się innej pary stałych: \varepsilon_0 oraz \mu_0. Zachodzi zależność:

\mu_0=\dfrac{1}{\varepsilon_0 c^2}.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s