Równoważność masy i energii: Albert Einstein (1906, 1946)

Chodzi o słynny wzór E=mc^2. Jest to tzw. energia spoczynkowa ciała, czyli energia ciała, które jako całość się nie porusza. Jeśli ciało się porusza, to dodatkowo ma także energię kinetyczną (przy niewielkich prędkościach jest ona taka sama jak w mechanice newtonowskiej: E_k=\frac{mv^2}{2}). W teorii względności należy energię spoczynkową doliczać do bilansu wszystkich rodzajów energii – bez energii spoczynkowej bilans ten jest niepełny i zasada zachowania energii nie jest spełniona. Wzór Einsteina oznacza także, że jeśli pewne nieruchome ciało zwiększy energię, np. zostanie podgrzane, to wzrośnie także jego masa. W gruncie rzeczy współczynnik z prędkością światła: c^2 jest jedynie przelicznikiem między energią i masą, moglibyśmy np. mierzyć masę w jednostkach energii, co praktykuje się w odniesieniu do cząstek elementarnych. Energia odpowiadająca nawet niewielkim masom jest olbrzymia, obliczmy energię odpowiadającą 1 kg:

E=1\mbox{ kg}\cdot(3\cdot 10^8\mbox{ m/s})^2=9\cdot 10^{16}\mbox{ J}.

Nie wyobrażamy sobie, co taka wielkość oznacza w praktyce. Bomba termojądrowa o wielkości 20 Mt trotylu wyzwala energię równoważną 0,93 kg. Inaczej mówiąc, masa produktów eksplozji jest mniejsza od masy substratów o 0,93 kg, ubytek ten przejawia się jako energia kinetyczna oraz energia promieniowania. Jest to 1000 razy więcej energii niż wyzwoliło się w wybuchu bomb nad Hiroszimą i Nagasaki.

timelipiec1946

Einstein został przez media uznany za duchowego ojca broni jądrowej, choć nie miał z nią nic wspólnego, nigdy nie zajmował się fizyką jądrową, a podczas drugiej wojny światowej nie dopuszczono go do Projektu Manhattan, ponieważ mu nie dowierzano. Zresztą pewnie nie na wiele by się przydał, problemy, które tam rozwiązywano, były raczej odległe od jego naukowych kompetencji, chodziło bowiem o inżynierskie zaplanowanie wybuchającego układu, postawienie fabryki rozdzielającej izotopy uranu itd. Wzór Einsteina pochodził z roku 1905, kiedy niewiele było nadziei, iż uda się go doświadczalnie potwierdzić. Łatwo zrozumieć dlaczego tak było: ubytek 1 kg masy odpowiada energii wyzwolonej w wybuchu 20\mbox{ Mt}=2\cdot 10^{10}\mbox{ kg} trotylu. Jeśli potraktować wybuch trotylu jako typową reakcję chemiczną, to widzimy, że należałoby ważyć produkty i substraty z dokładnością względną rzędu 10^{-10}, aby wykryć zmianę masy. Dlatego w chemii obowiązuje zasada zachowania masy, dopiero w reakcjach jądrowych pojawiają się energie, przy których wzór Einsteina zaczyna się praktycznie liczyć.

Uczony wielokrotnie przedstawiał różne proste doświadczenia myślowe, które uzasadniały ten wzór. Przedstawimy poniżej dwa takie rozumowania: z roku 1906 i z roku 1946.

einstein1906

Wyobraźmy sobie cylindryczny pojemnik o masie M zawieszony gdzieś w pustej przestrzeni i początkowo spoczywający. W pewnej chwili z lewego końca pojemnika wysyłana jest fala świetlna w kierunku w prawo. Fala ta ma energię E oraz pęd E/c – jest to wynik najzupełniej klasyczny, niezwiązany ani z teorią względności, ani z mechaniką kwantową. Można obliczyć, że kiedy fala elektromagnetyczna porusza jakimś ładunkiem i przekazuje mu energię E, to musi także przekazać mu pęd równy E/c (pęd ten przejawia się w zjawisku zwanym ciśnieniem promieniowania). W czasie, gdy fala biegnie w prawo, nasz pojemnik musi poruszać się w lewo: całkowity pęd musi nadal być równy zeru. Mamy więc

-Mv+\dfrac{E}{c}=0\Rightarrow v=\dfrac{E}{Mc}.

 Ruch pojemnika w lewo oraz impulsu falowego w prawo trwa, dopóki fala nie dobiegnie do prawego końca pojemnika, gdzie jest pochłonięta. Pojemnik przesunie się więc w lewo o wielkość

\Delta x=v\Delta t=\dfrac{E}{Mc}\dfrac{L}{c}=L\dfrac{E}{Mc^2}.

Położenie środka masy naszego układu nie może się zmienić pod wpływem tego, co dzieje się wewnątrz cylindra. Skoro cylinder przesunął się w lewo, to jakaś masa m wewnątrz niego musiała przemieścić się w prawo. W naszym przypadku jedynym fizycznym obiektem, który się przesunął, jest fala elektromagnetyczna: przebiegła ona odległość L w prawo. Skoro środek masy układu cylinder+fala elektromagnetyczna się nie przesuwa, to wielkości przesunięć obu tych obiektów muszą być w odwrotnym stosunku do ich mas:

\dfrac{m}{M}=\dfrac{\Delta x}{L}=\dfrac{E}{Mc^2}\Rightarrow m=\dfrac{E}{c^2}.

Powinniśmy więc przemieszczanie się energii traktować jako przemieszczanie się masy.

Drugie rozumowanie Einsteina pochodzi z roku 1946, co pokazuje, że wracał on niejednokrotnie do tych samych tematów i zastanawiał się nad nimi. Pisał w jednym z listów, że w wolnych chwilach lubi sobie wyprowadzić na nowo jakiś znany mu wzór czy zależność.

einstein1946

Teraz mamy spoczywające ciało o masie M, które pochłania dwie padające na nie z przeciwnych kierunków fale elektromagnetyczne. W tym układzie odniesienia ciało nadal będzie spoczywać po pochłonięciu obu fal, ponieważ ich pędy są przeciwne. Rozpatrzmy teraz tę samą sytuację w układzie primowanym, w którym nasze ciało przed pochłonięciem fal porusza się z prędkością v. Kierunki prędkości fal nieco się zmienią, jest to aberracja światła, odkryta kiedyś przez Jamesa Bradleya. Jeśli prędkość v jest niewielka w porównaniu z prędkością światła, kąt aberracji równy jest \alpha=v/c radianów (wynik ten nie wymaga teorii względności). Zastosujmy teraz zasadę zachowania pędu w układzie primowanym. Wiemy, że prędkość naszego ciała się nie zmieni, bo w układzie nieprimowanym spoczywa ono przed i po pochłonięciu impulsów światła. Musi więc zmienić się jego masa:

M'v=Mv+2\dfrac{E}{2c}\sin\alpha=\left(M+\dfrac{E}{c^2}\right)v \Rightarrow M'=M+\dfrac{E}{c^2}.

Masa nieruchomego ciała wzrosła wskutek pochłonięcia energii: kiedy leżymy na słońcu nasza masa rośnie.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s