Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s