Co to jest ciemna energia?

Ciemna energia to ponad dwie trzecie energii wszechświata. Wyjaśnienie jej pochodzenia jest zapewne największym wyzwaniem fizyki i kosmologii. Pokażemy krótko, o co chodzi, gdy mówimy o ciemnej energii.

1. Prawo Hubble’a

Edwin Hubble odkrył, że wszystkie dalekie obiekty oddalają się od nas z prędkością, która jest proporcjonalna do odległości. Wektorowo możemy to zapisać następująco:

\vec{v}=H\vec{R}.

Parametr H nazywamy parametrem Hubble’a. Gdybyśmy się przenieśli do galaktyki położonej w punkcie \vec{R_1}, prawo Hubble’a nadal będzie obowiązywało dla prędkości i położeń liczonych od galaktyki nr 1:

\vec{v}=\vec{v}_2-\vec{v}_1=H\vec{R}_2-H\vec{R}_1=h(\vec{R}_2-\vec{R}_1)=H\vec{R}.

hubble_Law

Na prawo Hubble’a należy patrzeć jak na rozszerzanie się przestrzeni: galaktyki są w stałych położeniach (jak rodzynki w cieście drożdżowym), a odległości między nimi stale rosną (całe ciasto „rośnie”). Skoro odległości te obecnie rosną, to znaczy, że w przeszłości były mniejsze. Łatwo obliczyć, jak dawno temu wszystkie galaktyki powinny być „obok siebie”. Wystarczy podzielić odległość przez prędkość:

t_H=\dfrac{R}{v}=\dfrac{1}{H}.

Czas ten nie zależy od tego, którą konkretnie galaktykę wybierzemy do obliczeń. Nazywamy go czasem Hubble’a, jego wartość równa się około 14 mld. lat. Zatem t_H lat temu cały wszechświat powinien być bardzo gęsty. Oczywiście, czas Hubble’a nie musi być równy wiekowi wszechświata. Byłoby tak, gdyby w przeszłości galaktyki oddalały się z taką samą prędkością jak dziś. Jednak prędkość ich oddalania się stopniowo maleje za sprawą grawitacji, która jest siłą przyciągającą. Oczekujemy więc, że wiek wszechświata jest mniejszy od czasu Hubble’a.

2. Od czego zależy parametr Hubble’a?

Obserwacje wskazują, że we wszechświecie gęstość materii jest wszędzie stała (oczywiście w odpowiednio dużej skali; nieco podobnie jak możemy uważać, że gaz ma stałą gęstość w skali znacznie większej niż odległość pojedynczych atomów). Pole grawitacyjne ma specyficzną własność: jeśli wyobrazimy sobie kulistą wnękę opróżnioną z materii, to w każdym jej punkcie przyciąganie grawitacyjne jakiejś małej próbnej masy będzie równe zeru.

dziura sferyczna1Oznacza to, że rozpatrując, co się dzieje z całym nieskończonym wszechświatem o stałej gęstości, wystarczy zająć się zachowaniem wybranej kuli – cała materia na zewnątrz tej kuli nie będzie wywierała żadnej siły wypadkowej. Rozpatrzmy więc kulę z galaktykami, która rozszerza się razem z całym wszechświatem. Galaktyki na powierzchni tej kuli mają pewną prędkość oddalania się, jest to zarazem prędkość ekspansji naszej kuli.

kula expandujaca

Możliwe są trzy przypadki: prędkość (dowolnej) galaktyki na powierzchni kuli może być większa, równa albo mniejsza od prędkości ucieczki z kuli. Sytuacja jest dokładnie taka, jak w przypadku wystrzeliwania jakiegoś ciała z powierzchni Ziemi: jego prędkość może być większa, równa albo mniejsza od prędkości ucieczki i nasze ciało albo oddali się nieograniczenie (w dwóch pierwszych wypadkach), albo oddali się na pewną maksymalną odległość, a potem zawróci. Obserwacje wskazują, że nasz wszechświat z jakichś powodów zachowuje się tak, że galaktyki mają dokładnie prędkość graniczną: prędkość ucieczki. Nie jest to oczywiste, wygląda na to, że warunki początkowe Wielkiego Wybuchu zostały w precyzyjny sposób wybrane właśnie tak, aby prędkość galaktyk była równa prędkości ucieczki. Wybrane – nie znaczy: wybrane przez Stwórcę, ale jakoś fizycznie wyróżnione. Objaśniają to teorie tzw. inflacji, którymi tutaj nie będziemy się zajmować.
Prędkość ucieczki z powierzchni kuli o masie M i promieniu R równa się (zob. dowolny podręcznik fizyki albo stosowne hasło Wikipedii):

v=\sqrt{\dfrac{2GM}{R}},

gdzie G jest stałą grawitacyjną. Ponieważ w naszej rozszerzającej się kuli są wciąż te same galaktyki, jej masa jest stała i wobec tego prędkość maleje w miarę ekspansji – czegoś takiego oczekujemy od grawitacji. Ktoś, kto zna pochodne, łatwo sprawdzi, że rozwiązaniem tego równania jest R\sim t^{\frac{2}{3}}, (a pochodna v=R^{\prime}\sim t^{-\frac{1}{3}}). Na wykresie wygląda to tak.

einstein de sitter

Masę kuli można zapisać jako iloczyn gęstości \rho i objętości, otrzymamy wówczas prawo Hubble’a:

v=\sqrt{\dfrac{8\pi G\rho}{3}}R\equiv HR.

Ze wzoru tego wynikają dwie rzeczy: bez względu na to jak dużą weźmiemy kulę, otrzymamy tę samą wartość parametru H, jak być powinno, jeśli nasze rozumowanie ma być prawdziwe. Po drugie, w miarę jak kula będzie się rozszerzać, gęstość materii będzie maleć (wciąż ta sama masa przypada bowiem na coraz większą objętość). Zatem parametr Hubble’a też będzie maleć z czasem. Cofając się w czasie, otrzymamy coraz mniejsze promienie i coraz większe gęstości oraz prędkości. Widać, że model ten traci sens, gdy promień równa się zeru, odpowiada to bowiem nieskończonej gęstości. To właśnie jest Wielki Wybuch. Nasz model, podobnie jak ogólna teoria względności, traci sens dla R=0. Możemy natomiast przewidywać, co się będzie działo po Wielkim Wybuchu, a więc dla t>0. I jeszcze jedno: Wielki Wybuch jest granicą czasową naszego wszechświata, ale nie jest związany z żadnym miejscem w przestrzeni. Moglibyśmy naszą kulę wybrać ze środkiem w dowolnym punkcie i wyniki byłyby takie same. Zatem Wielki Wybuch dokonał się jednocześnie w całej przestrzeni: to nie był wybuch jakiejś bomby w pewnym punkcie.

3. Ciemna energia

Parametr Hubble’a H maleje, gdy maleje gęstość wszechświata. Tak być powinno, grawitacja spowalnia ekspansję. Ponieważ nasz wszechświat rozszerza się z prędkością ucieczki, powinien spowalniać coraz bardziej, a parametr Hubble’a powinien dążyć asymptotycznie do zera, nigdy go nie osiągając. Obserwacje (Nobel 2011) wykazały jednak, że do gęstości materii galaktyk \rho należy w ostatnim wzorze na H dodać pewną dodatkową stałą gęstość \rho_{vac} – jest to energia próżni albo inaczej ciemna energia. Nie jest to jakaś drobna poprawka, w dzisiejszym wszechświecie stanowi około 70% całości. Co taki wyraz oznacza? Mamy nową stałą fizyczną, przynajmniej w naszym wszechświecie. Z czasem gęstość ciemnej energii będzie jeszcze bardziej dominować (bo gęstość materii ciągle maleje wskutek ekspansji). Stała Hubble’a nie dąży więc do zera, lecz do pewnej wartości stałej

H_0=\sqrt{\dfrac{8\pi G\rho_{vac}}{3}}> 0.

Prędkość ekspansji będzie więc proporcjonalna do rozmiarów kuli wszechświata. Im większa kula, tym szybciej będzie się nadymać. Oznacza to wzrost wykładniczy, a więc wszechświat rozszerzający się wciąż szybciej i szybciej. Ciemna energia działa zatem jak dodatkowa siła odpychająca, która w końcu przeważa nad grawitacją. Gdyby już dziś liczyła się tylko ciemna energia, dalsze losy wszechświata wyglądałyby następująco.

dark-energy

Jest to zupełnie rozsądne przybliżenie naszej kosmicznej przyszłości. Naprawdę oba wykresy z punktów 2 i 3 gładko w siebie przechodzą, dając tzw. Model uzgodniony (The Concordance Model).
Co może znaczyć taka stała gęstość energii (bo energia i masa są proporcjonalne: E=mc^2)? Może to być np. energia drgań zerowych pól kwantowych. W mechanice kwantowej niemożliwy jest absolutny spoczynek: dlatego np. elektron w atomie stale się porusza. Spoczynek oznaczałby naruszenie zasady nieoznaczoności Heisenberga. Z podobnego powodu atomy w krysztale drgają nawet w temperaturze zera bezwzględnego. No dobrze, ale tu mówimy o pustej przestrzeni. Co ma się w niej poruszać, gdy zabierzemy wszelkie cząstki? Z kwantowego punktu widzenia każda cząstka jest kwantem pewnego pola. Np. fotony są kwantami pola elektromagnetycznego. Pola takie muszą drgać nawet wówczas, gdy nie ma ani jednego fotonu. A muszą drgać, bo inaczej naruszona zostałaby zasada nieoznaczoności. Drgające pole ma pewną energię, więc pola kwantowe powinny mieć energię nawet wtedy, gdy usuniemy wszystkie cząstki. Tak to powinno wglądać, kłopot w tym, że nikt nie potrafi zamienić intuicji tego rodzaju na jakiś rachunek, który by pokazywał, jakie to konkretnie pola dają obserwowaną energię próżni, czyli ciemną energię.

Równania, które napisaliśmy, wynikają także z ogólnej teorii względności, ale wtedy rachunki są bardziej złożone technicznie.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s